OPTIMAL REDUCED-ORDER ESTIMATORS IN THE FREQUENCY-DOMAIN - THE DISCRETE-TIME CASE

被引:14
作者
HIPPE, P
WURMTHALER, C
机构
[1] Institut fur Regelungstechnik, Universitat Erlangen-Nurnberg
关键词
D O I
10.1080/00207179008953583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The discrete-time stationary Kalman filter problem is solved in the a-domain for nth-order systems with m outputs, where 0S; K:S; m measurements are noise-free. The design equations are very similar to the continuous-time cage, and they can be solved by spectral factorization, giving the polynomial matrix D(z) which parame- trizes the reduced-order optimal estimator in the frequency domain. By solving a single linear equation the equivalent time-domain representation for the optimal filter can also be obtained. A simple example demonstrates the filter design in the frequency domain. © 1990 Taylor and Francis Group, LLC.
引用
收藏
页码:1051 / 1064
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1979, OPTIMAL FILTERING
[2]   RETURN-DIFFERENCE-MATRIX PROPERTIES FOR OPTIMAL STATIONARY DISCRETE KALMAN FILTER [J].
ARCASOY, CC .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1971, 118 (12) :1831-&
[3]   LOWER ORDER OPTIMAL LINEAR FILTERING OF NONSTATIONARY RANDOM SEQUENCES [J].
BRAMMER, KG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (02) :198-+
[4]   LINEAR FILTERING FOR TIME-VARYING SYSTEMS USING MEASUREMENTS CONTAINING COLORED NOISE [J].
BRYSON, AE ;
JOHANSEN, DE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1965, AC10 (01) :4-&
[5]  
Gelb A, 1992, APPL OPTIMAL ESTIMAT
[6]   THE OPTIMAL PROJECTION EQUATIONS FOR REDUCED-ORDER STATE ESTIMATION - THE SINGULAR MEASUREMENT NOISE CASE [J].
HADDAD, WM ;
BERNSTEIN, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (12) :1135-1139
[8]   A NONMINIMAL REPRESENTATION OF REDUCED-ORDER OBSERVERS [J].
HIPPE, P .
AUTOMATICA, 1990, 26 (02) :405-409
[9]  
HIPPE P, IN PRESS IEEE T AUTO
[10]   EFFICIENT ALGORITHM FOR MATRIX SPECTRAL FACTORIZATION [J].
JEZEK, J ;
KUCERA, V .
AUTOMATICA, 1985, 21 (06) :663-669