THE EXACT LENGTH OF THE EUCLIDEAN ALGORITHM IN FQ[X]

被引:15
作者
KNOPFMACHER, A [1 ]
KNOPFMACHER, J [1 ]
机构
[1] UNIV WITWATERSRAND,DEPT MATH,JOHANNESBURG 2050,SOUTH AFRICA
关键词
D O I
10.1112/S002557930001528X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:297 / 304
页数:8
相关论文
共 7 条
[1]   The arithmetic of polynomials in a Galois field [J].
Carlitz, L .
AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 :39-50
[2]   SIMPLE ESTIMATE FOR NUMBER OF STEPS IN EUCLIDEAN ALGORITHM [J].
DIXON, JD .
AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (04) :374-&
[3]  
KILIAN H, 1983, ELEM MATH, V38, P11
[4]  
KNOPFMACHER J, 1975, ABSTR ANAL NUMB THEO
[5]  
KNOPFMACHER J, 1988, IN PRESS 3RD P INT C
[6]   STUDY ON STEP NUMBER OF EUCLIDIAN ALGORITHMS IN APPLICATION ON TRUE FRACTIONS [J].
PLANKENSTEINER, B .
MONATSHEFTE FUR MATHEMATIK, 1970, 74 (03) :244-+
[7]   THEOREM OF HEILBRONN [J].
PORTER, JW .
MATHEMATIKA, 1975, 22 (43) :20-28