INFRARED AND ULTRAVIOLET FINITENESS OF TOPOLOGICAL BF THEORY IN 2 DIMENSIONS

被引:25
作者
BLASI, A [1 ]
MAGGIORE, N [1 ]
机构
[1] UNIV GENOA,IST NAZL FIS NUCL,DIPARTIMENTO FIS,I-16146 GENOA,ITALY
关键词
D O I
10.1088/0264-9381/10/1/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The two-dimensional topological BF Model is considered in the Landau gauge in the framework of perturbation theory. Due to the singular behaviour of the ghost propagator at long distances, a mass term to the ghost fields is introduced as an infrared regulator. Relying on the supersymmetric algebraic structure of the resulting massive theory, we study the infrared and ultraviolet renormalizability of the model, with the outcome that it is perturbatively finite,
引用
收藏
页码:37 / 56
页数:20
相关论文
共 28 条
[1]   NONPOLYNOMIAL YANG-MILLS LOCAL COHOMOLOGY [J].
BANDELLONI, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (11) :2775-2780
[2]   RENORMALIZABILITY AND INFRARED FINITENESS OF NON-LINEAR SIGMA-MODELS - A REGULARIZATION-INDEPENDENT ANALYSIS FOR COMPACT COSET SPACES [J].
BECCHI, C ;
BLASI, A ;
BONNEAU, G ;
COLLINA, R ;
DELDUC, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :121-148
[3]   LANDAU GAUGE AND FINITENESS [J].
BLASI, A ;
PIGUET, O ;
SORELLA, SP .
NUCLEAR PHYSICS B, 1991, 356 (01) :154-162
[4]  
BLASI A, 1990, NUCL PHYS B, V345, P477
[5]   TOPOLOGICAL GAUGE-THEORIES OF ANTISYMMETRIC TENSOR-FIELDS [J].
BLAU, M ;
THOMPSON, G .
ANNALS OF PHYSICS, 1991, 205 (01) :130-172
[6]   TOPOLOGICAL GRAVITY IN 1+1 DIMENSIONS [J].
CHAMSEDDINE, AH ;
WYLER, D .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :595-616
[7]   GENERALIZATION OF ZIMMERMANNS NORMAL-PRODUCT IDENTITY [J].
CLARK, TE ;
LOWENSTEIN, JH .
NUCLEAR PHYSICS B, 1976, 113 (01) :109-134
[8]   SUPERSYMMETRY OF THE D=3 CHERN-SIMONS ACTION IN THE LANDAU GAUGE [J].
DELDUC, F ;
GIERES, F ;
SORELLA, SP .
PHYSICS LETTERS B, 1989, 225 (04) :367-371
[9]   EXACT SCALE-INVARIANCE OF THE CHERN-SIMONS THEORY IN THE LANDAU GAUGE [J].
DELDUC, F ;
LUCCHESI, C ;
PIGUET, O ;
SORELLA, SP .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :313-328
[10]  
DIXON JA, 1977, COHOMOLOGY RENORMALI