CHARACTERISTIC POLYNOMIALS FOR A CYCLE OF NON-LINEAR DISCRETE SYSTEMS WITH TIME DELAYS

被引:2
作者
Khamitova, A. D. [1 ]
机构
[1] Odessa Natl Polytech Univ, 1 Shevchenko Ave, UA-65044 Odessa, Ukraine
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2016年 / 12卷 / 04期
关键词
Non-linear systems; asymptotic stability of cycles; DFC methods;
D O I
10.21638/11701/spbu10.2016.410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a method associated with constructing of delayed feedback for local stabilization of periodic orbits of nonlinear discrete systems. An alternative approach to the construction of characteristic polynomial for the delay system linearized in the neighborhood of T-cycle is suggested. It is proven that our new alternative approach is equivalent to the standard one, however, it allows us to produce directly new forms of polynomials. These forms are convenient in applications to the problems of chaos control and allow us to apply methods of geometric complex function theory. This article is an extension of the results, which received D. Dmitrishin, P. Haglstein, A. Khamitova and A. Stokolos to the vector case.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 6 条
  • [1] On the stability of cycles by delayed feedback control
    Dmitrishin, D.
    Hagelstein, P.
    Khamitova, A.
    Stokolos, A.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) : 1538 - 1549
  • [2] Dmitrishin D, 2016, ASS WOMEN MATH UNPUB, V2
  • [3] Methods of harmonic analysis in nonlinear dynamics
    Dmitrishin, Dmitriy
    Khamitova, Anna
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (9-10) : 367 - 370
  • [4] Horn RA, 1986, MATRIX ANAL
  • [5] On the stability of delayed feedback controllers
    Morgül, Ö
    [J]. PHYSICS LETTERS A, 2003, 314 (04) : 278 - 285
  • [6] STOKOLOS A., 2014, P MATH STAT, V108, P49