NON-MARKOVIAN RELAXATION OF A SPIN-1/2 PARTICLE IN A FLUCTUATING TRANSVERSE FIELD - CUMULANT EXPANSION AND STOCHASTIC SIMULATION RESULTS

被引:30
作者
AIHARA, M [1 ]
SEVIAN, HM [1 ]
SKINNER, JL [1 ]
机构
[1] COLUMBIA UNIV, DEPT CHEM, NEW YORK, NY 10027 USA
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 12期
关键词
D O I
10.1103/PhysRevA.41.6596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the relaxation dynamics of a spin-1/2 particle in a fluctuating transverse magnetic field. With a cumulant expansion technique (up to sixth order) we calculate the time dependence of the approach to equilibrium of the population difference of the two spin levels and of the phase coherence. We find that for intermediate strength coupling to the fluctuations, the cumulant expansion converges, and the relaxation to equilibrium can have a pronounced non-Markovian character. We compare these analytic results with numerically exact data from stochastic simulations. © 1990 The American Physical Society.
引用
收藏
页码:6596 / 6601
页数:6
相关论文
共 11 条
[1]  
ABRAGAM A, 1961, PRINCIPLES NUCLEAR M
[2]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[3]   ON THE RELATIONSHIP BETWEEN T1 AND T2 FOR STOCHASTIC RELAXATION MODELS [J].
BUDIMIR, J ;
SKINNER, JL .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (5-6) :1029-1042
[4]   TIME-CONVOLUTIONLESS PROJECTION OPERATOR FORMALISM FOR ELIMINATION OF FAST VARIABLES - APPLICATIONS TO BROWNIAN-MOTION [J].
CHATURVEDI, S ;
SHIBATA, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 35 (03) :297-308
[5]   CRITIQUE OF GENERALIZED CUMULANT EXPANSION METHOD [J].
FOX, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (07) :1148-1153
[6]   ASYMPTOTICALLY EXACT EVALUATION OF T1 AND T2 FOR A 2-LEVEL SYSTEM COUPLED TO A BATH WITH DICHOTOMIC COLORED NOISE [J].
REINEKER, P ;
KAISER, B ;
JAYANNAVAR, AM .
PHYSICAL REVIEW A, 1989, 39 (03) :1469-1473
[7]   T2 CAN BE GREATER THAN 2T1 [J].
SEVIAN, HM ;
SKINNER, JL .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (03) :1775-1782
[8]   THEORY OF LOW FIELD RESONANCE AND RELAXATION-I [J].
SHIBATA, F ;
SATO, I .
PHYSICA A, 1987, 143 (03) :468-493
[9]  
VANKAMPEN NG, 1974, PHYSICA, V74, P239, DOI 10.1016/0031-8914(74)90122-0
[10]   CUMULANT EXPANSION FOR STOCHASTIC LINEAR-DIFFERENTIAL EQUATIONS .1. [J].
VANKAMPEN, NG .
PHYSICA, 1974, 74 (02) :215-238