PHASE MARGINS FOR MULTIVARIABLE CONTROL-SYSTEMS

被引:36
作者
BARON, JR [1 ]
JONCKHEERE, EA [1 ]
机构
[1] UNIV SO CALIF,DEPT ELECT ENGN SYST,LOS ANGELES,CA 90089
关键词
D O I
10.1080/00207179008953548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new definition for the phase margin of multi variable systems. The properties of the phase margin are such that a stable closed-loop multi-input multi-output system will remain stable for all unitary perturbations in the feedback path whose phases are less than the phase margin of the system. It is also shown that the definition of phase margin is invariant under unitary transformations of the system. © 1990 Taylor and Francis Group, LLC.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 2016, LINEAR NONLINEAR PRO
[2]  
Callier F.M., 1982, MULTIVARIABLE FEEDBA
[3]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[4]   MULTIVARIABLE FEEDBACK DESIGN - CONCEPTS FOR A CLASSICAL-MODERN SYNTHESIS [J].
DOYLE, JC ;
STEIN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :4-16
[5]   THE RELATION BETWEEN OPEN-LOOP AND CLOSED-LOOP PROPERTIES OF MULTIVARIABLE FEEDBACK-SYSTEMS [J].
FREUDENBERG, JS ;
LOOZE, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (04) :333-340
[6]  
FREUDENBERG JS, 1984, 23RD P IEEE C DEC CO
[7]  
HOFFMAN K, 1971, LINEAR ALGEBRA
[8]  
Horowitz I. M., 1963, SYNTHESIS FEEDBACK S
[9]  
Khargonekar P., 1985, IEEE T AUTOMATIC CON, V30
[10]  
Knopp K., 1975, THEORY FUNCTIONS 2