SOBOLEV-POINCARE INEQUALITIES FOR P-LESS-THAN-1

被引:14
作者
BUCKLEY, SM [1 ]
KOSKELA, P [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1512/iumj.1994.43.43011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If OMEGA is a John domain (or certain more general domains), and \del u\ satisfies a certain mild condition, we show that u is-an-element-of W-loc(1), W-loc(1) (OMEGA) satisfies a Sobolev-Poincare inequality (integral-OMEGA\u-a\q)1/q less-than-or-equal-to C(integral-OMEGA\del u\p)1/p for all 0 < p < 1, and appropriate q > 0. Our conclusion is new even when OMEGA is a ball.
引用
收藏
页码:221 / 240
页数:20
相关论文
共 17 条
[1]   INTEGRAL-INEQUALITIES OF HARDY AND POINCARE TYPE [J].
BOAS, HP ;
STRAUBE, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :172-176
[2]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[4]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[5]  
Heinonen J., 1993, NONLINEAR POTENTIAL
[6]   HARDY-LITTLEWOOD INEQUALITY FOR QUASI-REGULAR-MAPPINGS IN CERTAIN DOMAINS IN RN [J].
IWANIEC, T ;
NOLDER, CA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :267-282
[7]  
Martio O., 1988, REV ROUM MATH PURES, V33, P107
[8]  
NAKKI R, 1991, EXP MATH, V9, P3
[9]   NORM INEQUALITIES RELATING SINGULAR-INTEGRALS AND THE MAXIMAL-FUNCTION [J].
SAWYER, ET .
STUDIA MATHEMATICA, 1983, 75 (03) :253-263
[10]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS [J].
SERRIN, J .
ACTA MATHEMATICA, 1964, 111 (3-4) :247-302