TOTAL LEAST-SQUARES - STATE-OF-THE-ART REGRESSION IN NUMERICAL-ANALYSIS

被引:66
作者
NIEVERGELT, Y
机构
[1] Eastern Washington Univ, Cheney, WA
关键词
REGRESSION; TOTAL LEAST SQUARES; SINGULAR VALUE DECOMPOSITION;
D O I
10.1137/1036055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Total least squares regression (TLS) fits a line to data where errors may occur in both the dependent and independent variables. In higher dimensions, TLS fits a hyperplane to such data. The elementary algorithm presented here fits readily in a first course in numerical linear algebra.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 16 条
[1]  
ASKINS LE, 1987, MATH TEACHER, V80, P608
[2]   JACOBIS METHOD IS MORE ACCURATE THAN QR [J].
DEMMEL, J ;
VESELIC, K .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1204-1245
[3]   STRUCTURED TOTAL LEAST-SQUARES AND L2 APPROXIMATION-PROBLEMS [J].
DEMOOR, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 188 :163-205
[4]   LINES OF BEST FIT BY GRAPHICS AND THE WALD LINE [J].
DUFFIN, RJ .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09) :835-839
[5]  
Fisher G., 1992, MATH COMPUT, V59, P724, DOI DOI 10.2307/2153088
[6]  
GAZDAR AS, 1992, COLL MATH J, V23, P410
[7]  
GOLUB GH, 1989, MATRIX COMPUTATIONS
[8]  
Hoffmann, 1991, NUMERICAL MATH
[9]  
HOGG RV, 1978, INTRO MATH STATISTIC
[10]  
Kincaid D., 1991, NUMERICAL ANAL MATH