THEORY OF TIME-DEPENDENT CORRELATIONS IN MANY-BODY SYSTEMS

被引:0
作者
ALTENBERGER, AR [1 ]
机构
[1] POLISH ACAD SCI,INST PHYS CHEM,PL-01224 WARSAW,POLAND
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:345 / 354
页数:10
相关论文
共 50 条
  • [21] Dynamic correlations in Brownian many-body systems
    Brader, Joseph M.
    Schmidt, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (03)
  • [22] Exchange-correlation kernel in time-dependent density functional theory derived from many-body theory
    Karlsson, K
    Aryasetiawan, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (07): : 1055 - 1067
  • [23] On the dynamics of reaction coordinates in classical, time-dependent, many-body processes
    Meyer, Hugues
    Voigtmann, Thomas
    Schilling, Tanja
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (17)
  • [24] Time dependent dark energy and the thermodynamics of many-body systems
    Pourhassan, Behnam
    Upadhyay, Sudhaker
    PHYSICS OF THE DARK UNIVERSE, 2020, 29
  • [25] TOWARDS A QUANTUM MANY-BODY THEORY OF LATTICE DYNAMICS .I. TIME-DEPENDENT HARTREE APPROXIMATION
    FREDKIN, DR
    WERTHAME.NR
    PHYSICAL REVIEW, 1965, 138 (5A): : 1527 - &
  • [26] Many-body diagrammatic expansion for the exchange-correlation kernel in time-dependent density functional theory
    Tokatly, IV
    Stubner, R
    Pankratov, O
    PHYSICAL REVIEW B, 2002, 65 (11): : 1 - 4
  • [27] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [28] Spectral theory of time-periodic many-body systems
    Moller, JS
    Skibsted, E
    ADVANCES IN MATHEMATICS, 2004, 188 (01) : 137 - 221
  • [29] A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
    Gamayun, Oleksandr, V
    Lychkovskiy, Oleg, V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (01) : 41 - 51
  • [30] A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
    Oleksandr V. Gamayun
    Oleg V. Lychkovskiy
    Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 41 - 51