APPROXIMATION OF FRACTIONAL BROWNIAN MOTION BY THE VERNIERS INTEGRAL

被引:0
|
作者
Mishura, Y. S. [1 ]
Banna, O. L. [1 ]
机构
[1] Natl Taras Shevchenko Univ, Fac Mech & Math, Dept Probabil Theory & Math Stat, Academician Glushkov Ave 6, UA-03127 Kiev, Ukraine
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:96 / 104
页数:9
相关论文
共 50 条
  • [1] Approximation of Fractional Brownian Motion by Martingales
    Shklyar, Sergiy
    Shevchenko, Georgiy
    Mishura, Yuliya
    Doroshenko, Vadym
    Banna, Oksana
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 539 - 560
  • [2] Approximation of Fractional Brownian Motion by Martingales
    Sergiy Shklyar
    Georgiy Shevchenko
    Yuliya Mishura
    Vadym Doroshenko
    Oksana Banna
    Methodology and Computing in Applied Probability, 2014, 16 : 539 - 560
  • [3] Approximation of fractional Brownian sheet by Wiener integral
    Sang, Liheng
    Shen, Guangjun
    Chang, Qiangqiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (06) : 1423 - 1441
  • [4] APPROXIMATION OF A STOCHASTIC INTEGRAL BY FRACTIONAL AND BROWNIAN MOTION WITH INTEGRALS OVER ABSOLUTELY CONTINUOUS PROCESSES
    Androshchuk, T. O.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2005, 73 : 17 - 26
  • [5] On the Wiener integral with respect to the fractional Brownian motion
    Tudor, C
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (01): : 97 - 106
  • [6] An integral functional driven by fractional Brownian motion
    Sun, Xichao
    Yan, Litan
    Yu, Xianye
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2249 - 2285
  • [7] Approximation of rough paths of fractional Brownian motion
    Millet, Annie
    Sanz-Sole, Marta
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 275 - +
  • [8] Small values of the maximum for the integral of fractional Brownian motion
    Molchan, G
    Khokhlov, A
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 923 - 946
  • [9] On the representation of fractional Brownian motion as an integral with respect to (dt)a
    Jumarie, G
    APPLIED MATHEMATICS LETTERS, 2005, 18 (07) : 739 - 748
  • [10] Semimartingale approximation of fractional Brownian motion and its applications
    Nguyen Tien Dung
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (07) : 1844 - 1854