THE TRANSIENT SOLUTION OF M/M/1 QUEUES UNDER (M,N)-POLICY - A COMBINATORIAL APPROACH

被引:10
作者
BOHM, W
MOHANTY, SG
机构
[1] UNIV ECON,INST STAT,VIENNA,AUSTRIA
[2] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K3,ON,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
M/M/1; QUEUE; GEOMETRIC GEOMETRIC/1; CONTROL POLICY; TRANSIENT SOLUTION; LATTICE PATH ENUMERATION;
D O I
10.1016/0378-3758(93)90031-Z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It has been demonstrated by several authors, that combinatorial methods can be successfully applied to derive certain probability distributions in queuing theory. Recently the authors have obtained the transient solution of (0,N)-policy M/M/1 queues with an arbitrary number of initial customers, by considering their discrete-time analogue and by using combinatorial arguments. In this note, we derive the transient solution of M/M/1 queues under (MN)-policy by an alternative combinatorial method in which lattice paths with diagonal steps are counted. As a special case the result for ordinary M/M/1 queues is checked.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 9 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]  
BOHM W, 1990, 11 MCM U STAT RES RE
[3]   LATTICE PATHS WITH DIAGONAL STEPS [J].
GOODMAN, E ;
NARAYANA, TV .
CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (06) :847-&
[4]   GENERALIZATION OF ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER [J].
HANDA, BR .
CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03) :325-&
[5]  
Hunter J. J., 1983, MATH TECHNIQUES APPL
[6]  
KASHYAP BRK, 1965, P NAT I SCI INDIA, V31, P527
[7]  
MOHANTY SG, 1990, SANKHYA SER A, V52, P364
[8]  
MOHANTY SG, 1979, LATTICE PATH COUNTIN
[9]  
SEN K, 1990, J STATIST PLANN INFE, V34