NEW ASPECTS OF INTEGRABILITY OF GENERALIZED HENON-HEILES SYSTEMS

被引:14
作者
SARLET, W
机构
[1] Instituut voor Theoretische Mechanics, Rijksuniversneit Gent, Gent, B- 9000
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 22期
关键词
D O I
10.1088/0305-4470/24/22/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The class of so-called Henon-Heiles systems is slightly broadened by allowing for the existence of non-standard Hamiltonians. The extra parameter in the equations of motion is shown to give rise to a generalization of the three known integrability cases. In addition, three degenerate cases are detected, characterized by a partial decoupling of the equations. For these cases, we still obtain two independent first integrals, but their involutiveness can only be understood in terms of a non-standard Poisson structure.
引用
收藏
页码:5245 / 5251
页数:7
相关论文
共 50 条
[31]   On the dynamics of a seventh-order generalized Henon-Heiles potential [J].
Dubeibe, Fredy L. ;
Zotos, Euaggelos E. ;
Chen, Wei .
RESULTS IN PHYSICS, 2020, 18
[32]   BIFURCATIONS OF INVARIANT-MANIFOLDS IN THE GENERALIZED HENON-HEILES SYSTEM [J].
GAVRILOV, L .
PHYSICA D, 1989, 34 (1-2) :223-239
[33]   Basins of convergence of equilibrium points in the generalized Henon-Heiles system [J].
Zotos, Euaggelos E. ;
Riano-Doncel, A. ;
Dubeibe, F. L. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 :218-228
[34]   NOTE ON THE HENON-HEILES PROBLEM [J].
LEACH, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) :38-43
[35]   Determining the Properties of the Basins of Convergence in the Generalized Henon-Heiles System [J].
Zotos, Euaggelos E. ;
Suraj, Md. Sanam ;
Mittal, Amit ;
Aggarwal, Rajiv .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01)
[36]   CHAOTIC MOTIONS IN VIBRATING MOLECULES - THE GENERALIZED HENON-HEILES MODEL [J].
RAMASWAMY, R .
CHEMICAL PHYSICS, 1983, 76 (01) :15-24
[37]   On auto and hetero Backlund transformations for the Henon-Heiles systems [J].
Tsiganov, A. V. .
PHYSICS LETTERS A, 2015, 379 (45-46) :2903-2907
[38]   CANONICAL TRANSFORMATION BETWEEN INTEGRABLE HENON-HEILES SYSTEMS [J].
SALERNO, M ;
ENOLSKII, VZ ;
LEYKIN, DV .
PHYSICAL REVIEW E, 1994, 49 (06) :5897-5899
[39]   An extended Henon-Heiles system [J].
Hone, A. N. W. ;
Novikov, V. ;
Verhoeven, C. .
PHYSICS LETTERS A, 2008, 372 (09) :1440-1444
[40]   The Painleve analysis and construction of solutions for the generalized Henon-Heiles system [J].
Timoshkova, EI ;
Vernov, SY .
ORDER AND CHAOS IN STELLAR AND PLANETARY SYSTEMS, 2004, 316 :28-33