A BETTER LOWER-BOUND FOR ONLINE SCHEDULING

被引:56
作者
BARTAL, Y
KARLOFF, H
RABANI, Y
机构
[1] TEL AVIV UNIV,SCH MATH,DEPT COMP SCI,IL-69978 TEL AVIV,ISRAEL
[2] GEORGIA INST TECHNOL,COLL COMP,ATLANTA,GA 30332
[3] MIT,COMP SCI LAB,CAMBRIDGE,MA 02139
关键词
Competitive ratio - Lower bound - Online scheduling;
D O I
10.1016/0020-0190(94)00026-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the on-line version of the original m-machine scheduling problem: given m machines and n positive real jobs, schedule the n jobs on the m machines so as to minimize the makespan, the completion time of the last job. In the on-line version, as soon as a job arrives, it must be assigned immediately to one of the m machines. We study the competitive ratio of the best algorithm for m-machine scheduling. The largest prior lower bound was that if m greater-than-or-equal-to 4, then every algorithm has a competitive ratio at least 1 + 1 / square-root 2 almost-equal-to 1.707. We show that if m greater-than-or-equal-to 3454, then the competitive ratio of every algorithm exceeds 1.837. The best upper bound on the competitive ratio is now 1.945.
引用
收藏
页码:113 / 116
页数:4
相关论文
共 8 条
[1]  
BARTAL Y, 1992, 24TH P ACM S THEOR C, P51
[2]  
Faigle U., 1989, Acta Cybernetica, V9, P107
[3]  
Graham R. L., 1979, Discrete Optimisation, P287
[4]   BOUNDS FOR CERTAIN MULTIPROCESSING ANOMALIES [J].
GRAHAM, RL .
BELL SYSTEM TECHNICAL JOURNAL, 1966, 45 (09) :1563-+
[5]  
KARGER D, UNPUB BETTER ALGORIT
[6]  
Lawler E. L., 1983, MATH PROGRAMMING STA, P202, DOI 10.1007/978-3-642-68874-4_9
[7]  
LAWLER EL, IN PRESS HDB OPERATI, V4
[8]  
LENSTRA JK, 1988, INTRO MULTIPROCESSOR