Sufficient conditions of boundedness of L-index and analog of Hayman's Theorem for analytic functions in a ball

被引:10
作者
Bandura, Andriy [1 ]
Skaskiv, Oleh [2 ]
机构
[1] Ivano Frankivsk Natl Tech Univ Oil & Gas, Dept Adv Math, 15 Karpatska St, UA-76008 Ivano Frankivsk, Ukraine
[2] Ivan Franko Natl Univ Lviv, Dept Funct Theory & Theory Probabil, 1 Univ St, UA-79000 Lvov, Ukraine
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2018年 / 63卷 / 04期
关键词
Analytic function; unit ball; bounded L-index in joint variables; maximum modulus; partial derivative; bounded L-index in direction;
D O I
10.24193/subbmath.2018.4.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize some criteria of boundedness of L-index in joint variables for analytic in an unit ball functions. Our propositions give an estimate maximum modulus of the analytic function on a skeleton in polydisc with the larger radii by maximum modulus on a skeleton in the polydisc with the lesser radii. An analog of Hayman's Theorem for the functions is obtained. Also we established a connection between class of analytic in ball functions of bounded l(j)-index in every direction 1(j), j is an element of {1, ... ,n} and class of analytic in ball of functions of bounded L-index in joint variables, where L(z) = (l(1)(z), ... ,l(n) (z)), l(j): B-n -> R(+ )is continuous function, i(j )=( )(0, ... ,0, [GRAPHICS] , 0, ... ,0) is an element of R+(n), z is an element of C-n.
引用
收藏
页码:483 / 501
页数:19
相关论文
共 22 条
  • [1] Bandura A., 2016, ENTIRE FUNCTIONS SEV
  • [2] Bandura A, 2017, J MATH SCI N Y, V227, P1, DOI DOI 10.1007/S10958-017-3570-6
  • [3] Bandura A, ROCKY MOUNTAIN UNPUB
  • [4] Bandura A., 2016, MATH B SHEVCHENKO SC, V13, P58
  • [5] Directional Logarithmic Derivative and the Distribution of Zeros of an Entire Function of Bounded L-Index Along the Direction
    Bandura, A. I.
    Skaskiv, O. B.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (03) : 500 - 508
  • [6] Bandura A. I., 2016, MAT STUD, V45, P12
  • [7] Bandura A. I., 2016, MAT STUD, V46, P72, DOI DOI 10.15330/MS.46.1.72-80
  • [8] MAXIMUM MODULUS IN A BIDISC OF ANALYTIC FUNCTIONS OF BOUNDED L-INDEX AND AN ANALOGUE OF HAYMAN'S THEOREM
    Bandura, Andriy
    Petrechko, Nataliia
    Skaskiv, Oleh
    [J]. MATHEMATICA BOHEMICA, 2018, 143 (04): : 339 - 354
  • [9] Bandura A, 2017, J APPL MATH COMPUT, V16, P17, DOI 10.17512/jamcm.2017.2.02
  • [10] Chanda R, 1995, J PURE MATH, V12, P16