AN EFFICIENT ALGORITHM FOR THE LEAST-SQUARES CROSS-VALIDATION WITH SYMMETRICAL AND POLYNOMIAL KERNELS

被引:0
|
作者
LEE, BG [1 ]
KIM, BC [1 ]
机构
[1] KOREA ADV INST SCI & TECHNOL,SEOUL 131,SOUTH KOREA
关键词
PROBABILITY DENSITY ESTIMATION; LEAST-SQUARES CROSS-VALIDATION; CONVOLUTION; SYMMETRICAL AND POLYNOMIAL KERNELS;
D O I
10.1080/03610919008812933
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The least-squares cross-validation is a completely automatic method for choosing the smoothing parameter in probability density estimation but this method consume large amounts of computer time. This article concerns an efficient computational algorithm for this method when the kernel is symmetric and polynomial functions.
引用
收藏
页码:1513 / 1522
页数:10
相关论文
共 3 条