MULTI-PARAMETER TIKHONOV REGULARIZATION

被引:0
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ,4 ]
Takeuchi, Tomoya [1 ]
机构
[1] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Appl Math & Sci Comp, College Stn, TX 77843 USA
关键词
Multi-parameter regularization; value function; balancing principle; parameter choice;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study multi-parameter Tikhonov regularization, i.e., with multiple penalties. Such models are useful when the sought-for solution exhibits several distinct features simultaneously. Two choice rules, i.e., discrepancy principle and balancing principle, are studied for choosing an appropriate (vector-valued) regularization parameter, and some theoretical results are presented. In particular, the consistency of the discrepancy principle as well as convergence rate are established, and an a posteriori error estimate for the balancing principle is established. Also two fixed point algorithms are proposed for computing the regularization parameter by the latter rule. Numerical results for several nonsmooth multi-parameter models are presented, which show clearly their superior performance over their single-parameter counterparts.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 50 条
  • [31] A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data
    Xu X.
    Zhao J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (07): : 956 - 963and973
  • [32] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228
  • [33] Multi-parameter regularization techniques for ill-conditioned linear systems
    C. Brezinski
    M. Redivo-Zaglia
    G. Rodriguez
    S. Seatzu
    Numerische Mathematik, 2003, 94 : 203 - 228
  • [34] A multi-parameter regularization approach for estimating parameters in jump diffusion processes
    Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
    J Inverse Ill Posed Probl, 2006, 9 (861-880):
  • [35] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Dandan Jiang
    Circuits, Systems, and Signal Processing, 2017, 36 : 3702 - 3730
  • [36] Fast Adaptive Regularization for Perfusion Parameter Computation Tuning the Tikhonov Regularization Parameter to the SNR by Regression
    Manhart, Michael
    Maier, Andreas
    Hornegger, Joachim
    Doerfler, Arnd
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 311 - 316
  • [37] ON THE CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE FOR TIKHONOV REGULARIZATION
    Gockenbach, Mark S.
    Gorgin, Elaheh
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2694 - A2719
  • [38] Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times
    Mark Žic
    Sergiy Pereverzyev
    Vanja Subotić
    Sergei Pereverzyev
    GEM - International Journal on Geomathematics, 2020, 11
  • [39] The parameter choice rules for weighted Tikhonov regularization scheme
    Reddy, G. D.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2039 - 2052
  • [40] A Genetic Algorithm Approach for Selecting Tikhonov Regularization Parameter
    Wu, Chuansheng
    He, Jinrong
    Zou, Xiufen
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3980 - +