MULTI-PARAMETER TIKHONOV REGULARIZATION

被引:0
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ,4 ]
Takeuchi, Tomoya [1 ]
机构
[1] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Appl Math & Sci Comp, College Stn, TX 77843 USA
关键词
Multi-parameter regularization; value function; balancing principle; parameter choice;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study multi-parameter Tikhonov regularization, i.e., with multiple penalties. Such models are useful when the sought-for solution exhibits several distinct features simultaneously. Two choice rules, i.e., discrepancy principle and balancing principle, are studied for choosing an appropriate (vector-valued) regularization parameter, and some theoretical results are presented. In particular, the consistency of the discrepancy principle as well as convergence rate are established, and an a posteriori error estimate for the balancing principle is established. Also two fixed point algorithms are proposed for computing the regularization parameter by the latter rule. Numerical results for several nonsmooth multi-parameter models are presented, which show clearly their superior performance over their single-parameter counterparts.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 50 条
  • [21] Multi-parameter regularization method for atmospheric remote sensing
    Doicu, A
    Schreier, F
    Hilgers, S
    Hess, M
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 165 (01) : 1 - 9
  • [22] Seismic acoustic impedance inversion with multi-parameter regularization
    Li, Shu
    Peng, Zhenming
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (03) : 520 - 532
  • [23] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [24] Multi-parameter multiplicative regularization: An application to force reconstruction problems
    Aucejo, M.
    De Smet, O.
    JOURNAL OF SOUND AND VIBRATION, 2020, 469
  • [25] Multi-Parameter Regularization Method for Synthetic Aperture Imaging Radiometers
    Yang, Xiaocheng
    Yang, Zhenyi
    Yan, Jingye
    Wu, Lin
    Jiang, Mingfeng
    REMOTE SENSING, 2021, 13 (03) : 1 - 15
  • [26] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [27] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812
  • [28] On pseudooptimal parameter choice in the Tikhonov regularization method
    Leonov, A.S.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (01): : 40 - 44
  • [29] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [30] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Jiang, Dandan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (09) : 3702 - 3730