Disambiguation of the spatial entities by active learning

被引:0
|
作者
Chihaoui, Amal [1 ,2 ,3 ]
Bouhafs, Asma [2 ]
Roche, Mathieu [3 ,4 ]
Teisseire, Maguelonne [4 ]
机构
[1] Ecole Super Commerce Tunis, 2010 Campus Mannouba, Tunis, Tunisia
[2] Inst Hautes Etud Commerciales Carthage, Rue Victor Hugo, Carthage, Tunisia
[3] Cirad, TETIS, Montpellier, France
[4] Univ Montpellier, TETIS, APT, Cirad,CNRS,Irstea, 500 Rue Jean Francois Breton, F-34093 Montpellier 5, France
来源
REVUE INTERNATIONALE DE GEOMATIQUE | 2018年 / 28卷 / 02期
关键词
spatial entities; toponyms; spatial ambiguity; spatial desambiguation; active learning; uncertainty sampling; margin sampling; margin density sampling;
D O I
10.3166/rig.2018.00053
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Discovering spatial knowledge from texts could be a difficult task due to the ambiguity of textual documents written on natural language and the lack of large amounts of annotated data for the learning process. In this context, we address the problem of spatial entity desambiguation between "location" and "organisation" with active learning methods. First, we introduce a method based on lexical and contextual analysis. Second, we improve it by adding an active learning model, in order to automatically select the most informative unlabeled data to be annotated. Experimental setups are conducted on an english "SemEval-2007" corpus and demonstrate the effectiveness of the active learning methods to improve the initial learning model with small amounts of annotations.
引用
收藏
页码:163 / 189
页数:27
相关论文
共 50 条
  • [21] Optimised probabilistic active learning (OPAL)
    Krempl, Georg
    Kottke, Daniel
    Lemaire, Vincent
    MACHINE LEARNING, 2015, 100 (2-3) : 449 - 476
  • [22] Active learning based on belief functions
    Zhang, Shixing
    Han, Deqiang
    Yang, Yi
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (11)
  • [23] Basic topological models for spatial entities in 3-dimensional space
    Li Z.
    Li Y.
    Chen Y.-Q.
    GeoInformatica, 2000, 4 (4) : 419 - 433
  • [24] AN ACTIVE LEARNING HEURISTIC USING SPECTRAL AND SPATIAL INFORMATION FOR MRF-BASED CLASSIFICATION
    Hu, Bo
    Moser, Gabriele
    Serpico, Sebastiano B.
    Li, Peijun
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4356 - 4359
  • [25] Active Learning
    Wolfe, Kara
    JOURNAL OF TEACHING IN TRAVEL & TOURISM, 2006, 6 (01) : 77 - 82
  • [26] Evidential uncertainty sampling strategies for active learning
    Hoarau, Arthur
    Lemaire, Vincent
    Le Gall, Yolande
    Dubois, Jean-Christophe
    Martin, Arnaud
    MACHINE LEARNING, 2024, 113 (09) : 6453 - 6474
  • [27] Active Learning for kNN Using Instance Impact
    Qayyumi, Sayed Waleed
    Park, Laurence A. F.
    Obst, Oliver
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 413 - 426
  • [28] Exploring Active Learning for Student Behavior Classification
    Dumdumaya, Cristina E.
    Paredes, Yance Vance M.
    Rodrigo, Ma. Mercedes T.
    PROCEEDINGS OF 2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2019), 2019, : 165 - 169
  • [29] Active learning: an empirical study of common baselines
    Ramirez-Loaiza, Maria E.
    Sharma, Manali
    Kumar, Geet
    Bilgic, Mustafa
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (02) : 287 - 313
  • [30] Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning
    Shao, Feifei
    Luo, Yawei
    Liu, Ping
    Chen, Jie
    Yang, Yi
    Lu, Yulei
    Xiao, Jun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2575 - 2585