Disambiguation of the spatial entities by active learning

被引:0
|
作者
Chihaoui, Amal [1 ,2 ,3 ]
Bouhafs, Asma [2 ]
Roche, Mathieu [3 ,4 ]
Teisseire, Maguelonne [4 ]
机构
[1] Ecole Super Commerce Tunis, 2010 Campus Mannouba, Tunis, Tunisia
[2] Inst Hautes Etud Commerciales Carthage, Rue Victor Hugo, Carthage, Tunisia
[3] Cirad, TETIS, Montpellier, France
[4] Univ Montpellier, TETIS, APT, Cirad,CNRS,Irstea, 500 Rue Jean Francois Breton, F-34093 Montpellier 5, France
来源
REVUE INTERNATIONALE DE GEOMATIQUE | 2018年 / 28卷 / 02期
关键词
spatial entities; toponyms; spatial ambiguity; spatial desambiguation; active learning; uncertainty sampling; margin sampling; margin density sampling;
D O I
10.3166/rig.2018.00053
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Discovering spatial knowledge from texts could be a difficult task due to the ambiguity of textual documents written on natural language and the lack of large amounts of annotated data for the learning process. In this context, we address the problem of spatial entity desambiguation between "location" and "organisation" with active learning methods. First, we introduce a method based on lexical and contextual analysis. Second, we improve it by adding an active learning model, in order to automatically select the most informative unlabeled data to be annotated. Experimental setups are conducted on an english "SemEval-2007" corpus and demonstrate the effectiveness of the active learning methods to improve the initial learning model with small amounts of annotations.
引用
收藏
页码:163 / 189
页数:27
相关论文
共 50 条
  • [1] Applying active learning to supervised word sense disambiguation in MEDLINE
    Chen, Yukun
    Cao, Hongxin
    Mei, Qiaozhu
    Zheng, Kai
    Xu, Hua
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (05) : 1001 - 1006
  • [2] Bootstrapping Active Name Disambiguation with Crowdsourcing
    Cheng, Yu
    Chen, Zhengzhang
    Wang, Jiang
    Agrawal, Ankit
    Choudhary, Alok
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1213 - 1216
  • [3] Recognizing Biomedical Named Entities by Integrating Domain Contextual Relevance Measurement and Active Learning
    Gao, Jiangfan
    Chen, Jianhui
    Zhang, Shun
    He, Xiaobo
    Lin, Shaofu
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 1495 - 1499
  • [4] IMPROVING ACTIVE LEARNING METHODS USING SPATIAL INFORMATION
    Pasolli, Edoardo
    Melgani, Farid
    Tuia, Devis
    Pacifici, Fabio
    Emery, William J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3923 - 3926
  • [5] Exploring Spatial Diversity for Region-Based Active Learning
    Cai, Lile
    Xu, Xun
    Zhang, Lining
    Foo, Chuan-Sheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8702 - 8712
  • [6] Learning to Sample: an Active Learning Framework
    Shao, Jingyu
    Wang, Qing
    Liu, Fangbing
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 538 - 547
  • [7] Distributed Active Learning
    Shen, Pengcheng
    Li, Chunguang
    Zhang, Zhaoyang
    IEEE ACCESS, 2016, 4 : 2572 - 2579
  • [8] SVM Active Learning Approach for Image Classification Using Spatial Information
    Pasolli, Edoardo
    Melgani, Farid
    Tuia, Devis
    Pacifici, Fabio
    Emery, William J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04): : 2217 - 2233
  • [9] Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification
    Li, Qianming
    Zheng, Bohong
    Yang, Yusheng
    IEEE ACCESS, 2021, 9 : 61793 - 61806
  • [10] Active Learning for Intrusion Detection
    Gu, Yingjie
    Zydek, Dawid
    2014 NATIONAL WIRELESS RESEARCH COLLABORATION SYMPOSIUM (NWRCS 2014), 2014, : 117 - +