Some Extremal Problems for Algebraic Polynomials in Loaded Spaces

被引:2
作者
Osilenker, B. P. [1 ]
机构
[1] Moscow State Bldg Univ, Yaroslavskoe Sh 26, Moscow 129337, Russia
基金
俄罗斯基础研究基金会;
关键词
extremal problem; loaded spaces; loaded orthogonal polynomials; algebraic polynomials; classical Jacobi polynomials;
D O I
10.3103/S1066369X10020064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a loaded Jacobi space with the inner product < f, g > = Gamma(alpha + beta + 2)/2(alpha+beta+1)Gamma(alpha+1)Gamma(beta+1) integral(1)(-1) fg(1-x)(alpha)(1+ x)(beta)dx+Lf(1)g(1)+Mf(-1)g(-1) (L, M >= 0) we consider the lth derivative of the algebraic polynomial Pi((r))(N)(x) = Sigma(N)(k=N-r+1) a(k)((0)) x(k) + Sigma(N-r)(j=0) a(j)x(j) (a(N)((0)) > 0) with fixed coefficients a(k)((0)). We solve the following extremal problems: Find inf < D-l[Pi((r))(N) (x)], D-l[Pi((r))(N) (x)]> (D = d/dx, 0 <= l <= N - r) and calculate extremal polynomials.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 19 条
[11]  
Littlejohn LL., 1982, QUAEST MATH, V5, P255
[12]  
Marcellan F., 1997, MAT ZAMET, V62, P871
[13]  
Osilenker B. P., 2007, MAT ZAMETKI, V82, P411
[14]   Generalized trace formula and asymptotics of the averaged Turan determinant for polynomials orthogonal with a discrete Sobolev inner product [J].
Osilenker, Boris P. .
JOURNAL OF APPROXIMATION THEORY, 2006, 141 (01) :70-97
[15]  
Smirnov V. I., 1957, COURSE HIGHER MAT, VIV
[16]  
Suetin P.K., 1979, CLASSICAL ORTHOGONAL
[17]  
Szego G., 1939, ORTHOGONAL POLYNOMIA
[18]  
Tikhomirov V.M., 1987, ITOGI NAUKI TEKHNIKI, V14, P103
[19]  
Tikhonov A. N, 1966, EQUATIONS MATH PHYS