Some Extremal Problems for Algebraic Polynomials in Loaded Spaces

被引:2
作者
Osilenker, B. P. [1 ]
机构
[1] Moscow State Bldg Univ, Yaroslavskoe Sh 26, Moscow 129337, Russia
基金
俄罗斯基础研究基金会;
关键词
extremal problem; loaded spaces; loaded orthogonal polynomials; algebraic polynomials; classical Jacobi polynomials;
D O I
10.3103/S1066369X10020064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a loaded Jacobi space with the inner product < f, g > = Gamma(alpha + beta + 2)/2(alpha+beta+1)Gamma(alpha+1)Gamma(beta+1) integral(1)(-1) fg(1-x)(alpha)(1+ x)(beta)dx+Lf(1)g(1)+Mf(-1)g(-1) (L, M >= 0) we consider the lth derivative of the algebraic polynomial Pi((r))(N)(x) = Sigma(N)(k=N-r+1) a(k)((0)) x(k) + Sigma(N-r)(j=0) a(j)x(j) (a(N)((0)) > 0) with fixed coefficients a(k)((0)). We solve the following extremal problems: Find inf < D-l[Pi((r))(N) (x)], D-l[Pi((r))(N) (x)]> (D = d/dx, 0 <= l <= N - r) and calculate extremal polynomials.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 19 条
[1]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[2]   A note on the Koekoeks' differential equation for generalized Jacobi polynomials [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) :87-92
[3]  
Bazov I. A., 2005, P INT S FOUR SER THE, P9
[4]  
Courant R., 1937, METHODEN MATH PHYS, V1
[5]   NUMERICAL-METHODS FOR A SINGULAR EIGENVALUE PROBLEM WITH EIGEN-PARAMETER IN THE BOUNDARY-CONDITIONS [J].
FULTON, CT ;
PRUESS, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :431-462
[6]  
Khairov A. R., 2005, P INT C FUNCT SPAC T, P238
[7]   Differential equations for generalized Jacobi polynomials [J].
Koekoek, J ;
Koekoek, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) :1-31
[9]  
Krall A.M., 2002, OPER THEOR, V133