Anosov flows and non-Stein symplectic manifolds

被引:49
作者
Mitsumatsu, Y [1 ]
机构
[1] CHUO UNIV,DEPT MATH,BUNKYO KU,TOKYO 112,JAPAN
关键词
Anosov flows; contact structures; convex symplectic structures;
D O I
10.5802/aif.1500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We simplify and generalize McDuff's construction of symplectic 4-manifolds with disconnected boundary of contact type in terms of the linking pairing defined on the dual of 3-dimensional Lie algebras. This leads us to an observation that an Anosov flow gives rise to a bi-contact structure, i.e. a transverse pair of contact structures with different orientations, and the construction turns out to work for S-manifolds which admit Anosov flows with smooth invariant volume. Finally, new examples of bi-contact structures are given and related dynamical problems around bi-contact structures are raised.
引用
收藏
页码:1407 / &
页数:16
相关论文
共 16 条
[1]  
BENNEQUIN D, 1989, SEMINAIRE BOURBAKI, P725
[2]  
Eliashberg Y., 1989, P S PURE MATH 2, P135
[3]  
ELIASHBERG Y, 1990, INT J MATH, V1, P19
[4]  
ELIASHBERG Y, 1991, ANN I FOURIER GRENOB, V42, P165
[5]  
FOULON P, UNPUB PREPRINT
[6]  
GEIGES H, PREPRINT
[7]  
GHYS E, 1987, ANN SCI ECOLE NORM S, V20, P251
[8]  
GOODMAN S, 1983, SPRINGER LECTURE NOT, V1007
[9]  
GUNNING R, 1965, ANAL FUNCTIONS SEVER
[10]   ANOSOV-FLOWS ON NEW 3 MANIFOLDS [J].
HANDEL, M ;
THURSTON, WP .
INVENTIONES MATHEMATICAE, 1980, 59 (02) :95-103