SOME FURTHER DUALITY THEOREMS FOR OPTIMIZATION PROBLEMS WITH REVERSE CONVEX CONSTRAINT SETS

被引:12
|
作者
SINGER, I
机构
[1] Institute of Mathematics, the Romanian Academy, 70700 Bucharest
关键词
D O I
10.1016/0022-247X(92)90385-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuing our papers (Optimization 18, 1987, 485-499; and Math. Oper. Stat. Ser. Optim. 11, 1980, 221-234) we give some further duality theorems for the primal problem α = inf h({y ε{lunate} F|u(y) ε{lunate} Ω}), where F is an arbitrary set, h: F → R ̄ = [-∞, +∞] a function, Ω a subset of a locally convex space X such that XΩgW is convex, and u: F → X a mapping, and the dual problem β = inf λ(W), where W ⊂- X*Ω{0} and λ(w) = f h({y ε{lunate} F|wu(y) ≥ supw(XΩΩ)}) or λ(w) = inf h({y ε{lunate} FΩwu(y) = sup w(XΩΩ)}) (w ε{lunate} W). We also give an extension to the case when X is an arbitrary set and W ⊂- RxΩ{0}. © 1992.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [31] CONSTRAINT QUALIFICATIONS CHARACTERIZING FENCHEL DUALITY IN COMPOSED CONVEX OPTIMIZATION
    Sun, Xiang-Kai
    Long, Xian-Jun
    Zeng, Jing
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (02) : 325 - 347
  • [32] SOME DUALITY RESULTS IN CONVEX-OPTIMIZATION
    PRECUPANU, T
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (05): : 769 - 780
  • [33] RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION: REVERSE STRONG DUALITY AND OPTIMALITY
    Dinh N.
    Goberna M.A.
    López M.A.
    Volle M.
    Journal of Applied and Numerical Optimization, 2022, 4 (01): : 3 - 18
  • [34] ON ε-OPTIMALITY THEOREMS FOR CONVEX VECTOR OPTIMIZATION PROBLEMS
    Kim, Gwi Soo
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (03) : 473 - 482
  • [35] ON DUALITY THEOREMS FOR SEMIDEFINITE LINEAR FRACTIONAL OPTIMIZATION PROBLEMS
    Kim, Moon Hee
    Kim, Gwi Soo
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (09) : 1907 - 1912
  • [36] Strong Fenchel Duality For Evenly Convex Optimization Problems
    Majeed, Saba Naser
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (12): : 1723 - 1729
  • [37] New duality results for evenly convex optimization problems
    Fajardo, M. D.
    Grad, S. M.
    Vidal, J.
    OPTIMIZATION, 2021, 70 (09) : 1837 - 1858
  • [38] On strong and total Lagrange duality for convex optimization problems
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    Wanka, Gert
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1315 - 1325
  • [39] The complexity results of the sparse optimization problems and reverse convex optimization problems
    Zhongyi Jiang
    Qiying Hu
    Optimization Letters, 2020, 14 : 2149 - 2160
  • [40] The complexity results of the sparse optimization problems and reverse convex optimization problems
    Jiang, Zhongyi
    Hu, Qiying
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2149 - 2160