SOME FURTHER DUALITY THEOREMS FOR OPTIMIZATION PROBLEMS WITH REVERSE CONVEX CONSTRAINT SETS

被引:12
作者
SINGER, I
机构
[1] Institute of Mathematics, the Romanian Academy, 70700 Bucharest
关键词
D O I
10.1016/0022-247X(92)90385-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuing our papers (Optimization 18, 1987, 485-499; and Math. Oper. Stat. Ser. Optim. 11, 1980, 221-234) we give some further duality theorems for the primal problem α = inf h({y ε{lunate} F|u(y) ε{lunate} Ω}), where F is an arbitrary set, h: F → R ̄ = [-∞, +∞] a function, Ω a subset of a locally convex space X such that XΩgW is convex, and u: F → X a mapping, and the dual problem β = inf λ(W), where W ⊂- X*Ω{0} and λ(w) = f h({y ε{lunate} F|wu(y) ≥ supw(XΩΩ)}) or λ(w) = inf h({y ε{lunate} FΩwu(y) = sup w(XΩΩ)}) (w ε{lunate} W). We also give an extension to the case when X is an arbitrary set and W ⊂- RxΩ{0}. © 1992.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 13 条
[1]   PHI-CONVEXITY IN EXTREMAL PROBLEMS [J].
DOLECKI, S ;
KURCYUSZ, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :277-300
[2]   ABSTRACT STUDY OF OPTIMALITY CONDITIONS [J].
DOLECKI, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (01) :24-48
[3]  
Fan K., 1963, P S PURE MATH, V7, P211
[4]  
FRANCHETTI C, 1980, B UNIONE MAT ITAL, V17, P33
[5]  
Horst R., 1990, GLOBAL OPTIMIZATION
[6]  
KLEE VL, 1958, MATH Z, V69, P90
[7]  
Singer I., 1987, Optimization, V18, P485, DOI 10.1080/02331938708843264
[8]  
Singer I., 1980, Mathematische Operationsforschung und Statistik, Series Optimization, V11, P221, DOI 10.1080/02331938008842649
[9]  
SINGER I, 1983, LECTURE NOTES PURE A, V86, P13
[10]  
SINGER I, 1987, LECT NOTES PURE APPL, V107, P253