SPIN-WAVE ANALYSIS OF EASY-AXIS QUANTUM ANTIFERROMAGNETS ON THE TRIANGULAR LATTICE

被引:26
作者
KLEINE, B
MULLERHARTMANN, E
FRAHM, K
FAZEKAS, P
机构
[1] INT CTR THEORET PHYS, I-34100 TRIESTE, ITALY
[2] HUNGARIAN ACAD SCI, CENT RES INST PHYS, H-1525 BUDAPEST, HUNGARY
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1992年 / 87卷 / 01期
关键词
D O I
10.1007/BF01308264
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We perform the standard spin wave analysis of the triangular Heisenberg quantum antiferromagnet with nearest neighbour coupling. The exchange interaction is taken to be DELTA-J(z) = J(x) = J(y) (0 < DELTA less-than-or-equal-to 1). We give a simple explanation of the non-trivial classical degeneracy pointed out by Miyashita and Kawamura and show that it is removed by quantum fluctuations, but that the degeneracy manifests itself through the appearance of a second gapless spin-wave branch. The existence of a second gap-less mode has a drastic influence on the quasiclassical behaviour near the Ising limit: the energy gain with respect to the Ising state energy is found to be linear in DELTA, and the reduction of the sublattice magnetization on two of the three sublattices remains finite as DELTA --> 0. These findings essentially invalidate the original qualitative arguments [14] in favour of a spin-liquid ground state of the anisotropic triangular antiferromagnet.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 27 条
[1]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[2]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[3]  
Baskaran G., 1988, International Journal of Modern Physics B, V2, P539, DOI 10.1142/S0217979288000366
[4]   NOVEL LOCAL SYMMETRIES AND CHIRAL-SYMMETRY-BROKEN PHASES IN S=1/2 TRIANGULAR-LATTICE HEISENBERG-MODEL [J].
BASKARAN, G .
PHYSICAL REVIEW LETTERS, 1989, 63 (22) :2524-2527
[5]   QUANTUM-THEORY OF AN ANTIFERROMAGNET ON A TRIANGULAR LATTICE IN A MAGNETIC-FIELD [J].
CHUBUKOV, AV ;
GOLOSOV, DI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (01) :69-82
[6]   GROUND-STATE PROPERTIES OF THE S=1/2 HEISENBERG-ANTIFERROMAGNET ON A TRIANGULAR LATTICE - A NUMERICAL STUDY OF A FINITE CELL [J].
DEUTSCHER, R ;
EVERTS, HU ;
MIYASHITA, S ;
WINTEL, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :L1043-L1051
[7]   GROUND-STATE PROPERTIES OF ANISOTROPIC TRIANGULAR ANTIFERROMAGNET [J].
FAZEKAS, P ;
ANDERSON, PW .
PHILOSOPHICAL MAGAZINE, 1974, 30 (02) :423-440
[8]  
Fazekas P., 1989, Physikalische Blaetter, V45, P12
[9]   EXPERIMENTAL STUDIES OF TRIANGULAR LATTICE ANTIFERROMAGNETS WITH S=1/2 - NATIO2 AND LINIO2 [J].
HIRAKAWA, K ;
KADOWAKI, H ;
UBUKOSHI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (09) :3526-3536
[10]   MAGNETIC-PROPERTIES OF THE S = 1/2 ANTIFERROMAGNETIC TRIANGULAR LATTICE LINIO2 [J].
HIROTA, K ;
NAKAZAWA, Y ;
ISHIKAWA, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (25) :4721-4730