GROBNER BASES AND PRIMARY DECOMPOSITION OF MODULES

被引:8
作者
RUTMAN, EW [1 ]
机构
[1] UNIV MARYLAND,COLL PK,MD 20742
关键词
D O I
10.1016/0747-7171(92)90019-Z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper I present definitions and algorithms for Gröbner bases for submodules of free modules over polynomial rings in n variables over Noetherian commutative rings with certain algorithmic properties. I then give an algorithm for computing the primary decomposition of submodules of submodules of these free modules when the base ring is also a PID, a show that under certain dimension conditions the requirement of a PID may be dropped. © 1992.
引用
收藏
页码:483 / 503
页数:21
相关论文
共 10 条
[1]  
Buchberger B., 1985, MULTIDIMENSIONAL SYS, P184
[2]   GROBNER BASES AND PRIMARY DECOMPOSITION OF POLYNOMIAL IDEALS [J].
GIANNI, P ;
TRAGER, B ;
ZACHARIAS, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) :149-167
[3]  
Hungerford T. W., 1974, GRADUATE TEXTS MATH, V73
[4]  
KUNTZ E, 1985, INTRO COMMUTATIVE AL
[6]  
Matsumura Hideyuki, 1980, COMMUTATIVE ALGEBRA, V56
[7]   ON THE CONSTRUCTION OF GROBNER BASES USING SYZYGIES [J].
MOLLER, HM .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) :345-359
[8]  
MOLLER HM, 1986, J ALGEBRA, V100, P133
[9]  
RUTMAN EW, 1992, THESIS U MARYLAND
[10]  
Zariski O., 1975, GRADUATE TEXTS MATH, V28