INTEGRAL TRANSFINITE DIAMETER OF A REAL INTERVAL

被引:20
作者
AMOROSO, F
机构
[1] UNIV PARIS 06,INST HENRI POINCARE,CNRS PROBLEMES DIOPHANTIENS,URA 763,F-75231 PARIS 05,FRANCE
[2] SCUOLA NORMALE SUPER PISA,I-56100 PISA,ITALY
关键词
D O I
10.5802/aif.1240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some new upper and lower bound for the least deviation from zero of integral polynomials over intervals I with rational extremities are given. These bounds, obtained combining the theory of orthogonal polynomials with elementary arguments from the geometry of numbers, explicitly depend on the diameter of I and on the denominators of its extremities.
引用
收藏
页码:885 / 911
页数:27
相关论文
共 13 条
[1]  
APARICIO E, 1979, 6TH P C PORT SPAN 1, P289
[2]  
APARICIO E, 1978, REV MAT HISP AM, V38, P259
[3]  
Chudnovsky G. V., 1983, PROGR MATH, V35, P61
[4]  
FERGUSON O, 1980, APPROXIMATION POLYNO
[5]  
HARDY GH, 1984, INTRO THEORY NUMBERS
[6]  
LANGEVIN M, 1986, PUBL MATH ORSAY, P52
[7]  
LANGEVIN M, 1989, PROGR MATH, V75, P221
[8]  
NAIR M, 1982, J LOND MATH SOC, V25, P385
[9]   ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES [J].
NAIR, M .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (02) :126-129
[10]  
RHIN G, COMMUNICATION