SPECTRAL SPLITTING AND WAVE-FUNCTION SCALING IN QUASI-CRYSTALLINE AND HIERARCHICAL STRUCTURES

被引:126
|
作者
NIU, Q
NORI, F
机构
[1] UNIV TEXAS,DEPT PHYS,AUSTIN,TX 78712
[2] UNIV MICHIGAN,DEPT PHYS,ANN ARBOR,MI 48109
来源
PHYSICAL REVIEW B | 1990年 / 42卷 / 16期
关键词
D O I
10.1103/PhysRevB.42.10329
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We give a comprehensive presentation of a renormalization-group theory for the study of a set of one-dimensional Schrödinger equations on quasicrystalline and hierarchical structures. Particular attention is focused on the spectral clustering and wave-function scaling properties. New results are given on (i) a general characterization of the wave functions, (ii) the scaling of the localized edge states, and (iii) a hierarchical-lattice implementation of the renormalization group. © 1990 The American Physical Society.
引用
收藏
页码:10329 / 10341
页数:13
相关论文
共 50 条