THE MONOTONICITY OF THE ENTROPY FOR A FAMILY OF DEGREE ONE CIRCLE MAPS

被引:2
作者
ALSEDA, L [1 ]
MANOSAS, F [1 ]
机构
[1] UNIV POLITECN CATALUNYA,ETS ENGINYERS IND TERRASSA,E-08222 TERRASSA,SPAIN
关键词
KNEADING THEORY; MONOTONICITY; TOPOLOGICAL ENTROPY;
D O I
10.2307/2154477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the natural biparametric family of piecewise linear circle maps with two pieces we show that the entropy increases when any of the two parameters increases. We also describe the regions of the parameter space where the monotonicity is strict.
引用
收藏
页码:651 / 684
页数:34
相关论文
共 9 条
  • [1] TWIST PERIODIC-ORBITS AND TOPOLOGICAL-ENTROPY FOR CONTINUOUS-MAPS OF THE CIRCLE OF DEGREE ONE WHICH HAVE A FIXED-POINT
    ALSEDA, L
    LLIBRE, J
    MISIUREWICZ, M
    SIMO, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 : 501 - 517
  • [2] KNEADING THEORY AND ROTATION INTERVALS FOR A CLASS OF CIRCLE MAPS OF DEGREE-ONE
    ALSEDA, L
    MANOSAS, F
    [J]. NONLINEARITY, 1990, 3 (02) : 413 - 452
  • [3] lower bounds of the topological entropy for continuous maps of the circle of degree one
    Alseda, Lluis
    Llibre, Jaume
    Manosas, Francesc
    Misiurewicz, Michat
    [J]. NONLINEARITY, 1988, 1 (03) : 463 - 479
  • [4] MONOTONICITY PROPERTIES OF THE FAMILY OF TRAPEZOIDAL MAPS
    BRUCKS, KM
    MISIUREWICZ, M
    TRESSER, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) : 1 - 12
  • [5] MILNOR J, 1988, LECT NOTES MATH, V1342, P465
  • [6] MISIUREWICZ M, 1991, ANN I H POINCARE-PR, V27, P125
  • [7] Misiurewicz M., 1982, ERGOD THEOR DYN SYST, V2, P221
  • [8] [No title captured]
  • [9] [No title captured]