A NOTE ON NUMBER OF SOLUTIONS NP OF CONGRUENCE Y2=X3-DX(MOD P)

被引:0
作者
RAJWADE, AR
机构
来源
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1970年 / 67卷
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:603 / &
相关论文
共 50 条
[41]   THE NUMBER OF LIMIT CYCLES OF THE DY/DX=Q(X,Y,Z)/P(X,Y,Z), DZ/DX=R(X,Y,Z)/P(X,Y,Z), SYSTEM WHERE P(X,Y,Z),Q(X,Y,Z),R(X,Y,Z) ARE 2ND DEGREE POLYNOMIALS [J].
KHUDAIVERENOV, MG .
DOKLADY AKADEMII NAUK SSSR, 1959, 128 (05) :899-902
[42]   Integral Points on the Elliptic Curve y2 = x3 − 4p2x [J].
Hai Yang ;
Ruiqin Fu .
Czechoslovak Mathematical Journal, 2019, 69 :853-862
[43]   On the family of elliptic curves y2 = x3 - m2x + p2 [J].
Juyal, Abhishek ;
Kumar, Shiv Datt .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05)
[44]   Sato-Tate distributions of y2=xP-1 and y2=x2P-1 [J].
Emory, Melissa ;
Goodson, Heidi .
JOURNAL OF ALGEBRA, 2022, 597 :241-265
[45]   On the congruence x1x2 x3x4 mod q [J].
Kerr, Bryce .
JOURNAL OF NUMBER THEORY, 2017, 180 :154-168
[46]   CLASSES OF EQUATIONS OF TYPE Y2=X3+K HAVING NO RATIONAL SOLUTIONS [J].
EDGAR, HM .
NAGOYA MATHEMATICAL JOURNAL, 1966, 28 (OCT) :49-&
[47]   The cubic congruence x3+ax2+bx+c ≡ 0(mod p) and binary quadratic forms F(x, y) = ax2+bxy+cy2 [J].
Tekcan, Ahmet .
ARS COMBINATORIA, 2007, 85 :257-269
[48]   INTEGER SOLUTIONS OF Y2=(X+A)(X+B)(X+C) [J].
SCHUEPBACH, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (02) :172-172
[50]   椭圆曲线y2=x3+(p-4)x-2p的整数点 [J].
管训贵 .
数学进展, 2014, 43 (04) :521-526