POSITIVE GLOBAL-SOLUTIONS OF A NONHOMOGENEOUS SEMILINEAR ELLIPTIC EQUATION

被引:0
作者
EGNELL, H [1 ]
KAJ, I [1 ]
机构
[1] UPPSALA UNIV,DEPT MATH,S-75238 UPPSALA,SWEDEN
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1991年 / 70卷 / 03期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider positive, global solutions of the nonhomogeneous, semilinear, elliptic equation DELTA-u+u2+theta-phi = 0 in R(n), where phi is a given function and theta a positive parameter. By using implicit function theory, variational analysis and a phase plane technique we investigate, under various assumptions on phi, the structure of the solution set (theta, u-theta).
引用
收藏
页码:345 / 367
页数:23
相关论文
共 15 条
[1]   EMDEN-FOWLER EQUATIONS INVOLVING CRITICAL EXPONENTS [J].
ATKINSON, FV ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) :755-776
[2]  
BANDLE C, 1989, J REINE ANGEW MATH, V401, P25
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   SEMILINEAR ELLIPTIC-EQUATIONS AND SUPERCRITICAL GROWTH [J].
BUDD, C ;
NORBURY, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 68 (02) :169-197
[8]   CRITICAL-BEHAVIOR OF SOME MEASURE-VALUED PROCESSES [J].
FLEISCHMANN, K .
MATHEMATISCHE NACHRICHTEN, 1988, 135 :131-147
[9]  
Fowler R. H., 1931, MON NOT R ASTRON SOC, V2, P258, DOI [10.1093/qmath/os-2.1.259, DOI 10.1093/QMATH/OS-2.1.259]