ACCURATE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER AND DIRAC WAVE-EQUATIONS

被引:225
作者
SALVAT, F [1 ]
FERNANDEZVAREA, JM [1 ]
WILLIAMSON, W [1 ]
机构
[1] UNIV TOLEDO,DEPT PHYS & ASTRON,TOLEDO,OH 43606
关键词
SCHRODINGER EQUATION; DIRAC EQUATION; CENTRAL FIELDS; BOUND STATES; EIGENVALUES; FREE STATES; PHASE SHIFTS; COULOMB FUNCTIONS;
D O I
10.1016/0010-4655(95)00039-I
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A FORTRAN 77 subroutine package for the numerical solution of the Schrodinger and Dirac wave equations for central fields is presented. The considered fields are such that the function V(r) drop rV(r) is finite for all r and tends to constant values for r --> 0 and r --> infinity. This includes finite-range fields as well as combinations of Coulomb and short-range fields. The potential energy function V(r) used in the calculation is the natural cubic spline that interpolates a table of values provided by the user. The radial wave equations are solved by using piecewise exact power series expansions of the radial functions, which are summed up to the prescribed accuracy so that truncation errors can be completely avoided. Normalized radial wave functions, eigenvalues for bound states and phase shifts for free states are evaluated.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[2]   RELATIVISTIC HYDROGEN-ATOM - SIMPLE SOLUTION [J].
AUVIL, PR ;
BROWN, LM .
AMERICAN JOURNAL OF PHYSICS, 1978, 46 (06) :679-681
[3]   COULOMB FUNCTIONS IN ENTIRE (ETA,RHO)-PLANE [J].
BARDIN, C ;
WOLTER, HH ;
TAMURA, T ;
GUILLERMIN, J ;
LENA, T ;
GAUTHIER, L ;
PERNET, JM ;
DANDEU, Y .
COMPUTER PHYSICS COMMUNICATIONS, 1972, 3 (02) :73-+
[4]   COULOMB WAVE-FUNCTIONS FOR ALL REAL ETA AND RHO [J].
BARNETT, AR ;
FENG, DH ;
STEED, JW ;
GOLDFARB, LJ .
COMPUTER PHYSICS COMMUNICATIONS, 1974, 8 (05) :377-395
[6]   NUMERICAL TREATMENT OF COULOMB WAVE FUNCTIONS [J].
FROBERG, CE .
REVIEWS OF MODERN PHYSICS, 1955, 27 (04) :399-411
[7]  
Greiner W., 1990, RELATIVISTIC QUANTUM
[8]  
KOLSRUD M, 1966, PHYS NORV, V2, P43
[9]  
Maron M.M., 1982, NUMERICAL ANAL PRACT
[10]   RELATIVISTIC SELF-CONSISTENT FIELD CALCULATION FOR MERCURY [J].
MAYERS, DF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1224) :93-109