RIGOROUS BOUNDS ON THE FAST DYNAMO GROWTH-RATE INVOLVING TOPOLOGICAL-ENTROPY

被引:68
作者
KLAPPER, I [1 ]
YOUNG, LS [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
D O I
10.1007/BF02101659
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fast dynamo growth rate for a C-k+1 map or flow is bounded above by topological entropy plus a l/k correction. The proof uses techniques of random maps combined with a result of Yomdin relating curve growth to topological entropy. This upper bound implies the following anti-dynamo theorem: in C-infinity systems fast dynamo action is not possible without the presence of chaos. In addition topological entropy is used to construct a lower bound for the fast dynamo growth rate in the case R(m) = infinity.
引用
收藏
页码:623 / 646
页数:24
相关论文
共 36 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
ARNOLD VI, 1981, ZH EKSP TEOR FIZ, V54, P1083
[3]  
BAYLY B, 1988, GEOPHYS ASTROPHYS FL, V44, P207
[4]   FAST MAGNETIC DYNAMOS IN CHAOTIC FLOWS [J].
BAYLY, BJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (22) :2800-2803
[6]   PRODUCT FORMULAS AND NUMERICAL ALGORITHMS [J].
CHORIN, AJ ;
HUGHES, TJR ;
MCCRACKEN, MF ;
MARSDEN, JE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :205-256
[7]  
COLLET P, 1992, COMMUNICATION
[8]  
Feller W., 1957, INTRO PROBABILITY TH
[9]   CHAOTIC FLOWS AND FAST MAGNETIC DYNAMOS [J].
FINN, JM ;
OTT, E .
PHYSICS OF FLUIDS, 1988, 31 (10) :2992-3011
[10]  
Gilbert A.D., 1988, GEOPHYS ASTROPHYS FL, V44, P214