Exact S-matrices for d(n+1)((2)) affine Toda solitons and their bound states

被引:20
作者
Gandenberger, GM
MacKay, NJ
机构
[1] Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, CB3 9EW, Silver Street
关键词
D O I
10.1016/0550-3213(95)00462-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We conjecture an exact S-matrix for the scattering of solitons in d(n+1)((2)), affine Toda field theory in terms of the R-matrix of the quantum group U-q(c(n)((1))). From this we construct the scattering amplitudes for all scalar bound states (breathers) of the theory. This S-matrix conjecture is justified by detailed examination of its pole structure. We show that a breather-particle identification holds by comparing the S-matrix elements for the lowest breathers with the S-matrix for the quantum particles in real affine Toda field theory, and discuss the implications for various forms of duality.
引用
收藏
页码:240 / 272
页数:33
相关论文
共 56 条
[1]   HIROTA SOLITONS IN THE AFFINE AND THE CONFORMAL AFFINE TODA MODELS [J].
ARATYN, H ;
CONSTANTINIDIS, CP ;
FERREIRA, LA ;
GOMES, JF ;
ZIMERMAN, AH .
NUCLEAR PHYSICS B, 1993, 406 (03) :727-770
[2]  
ARTZ S, BONNTH9509 PREPR
[3]  
BABICHENKO A, VECTOR PERTURBATIONS
[4]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[5]   BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA [J].
BIRMAN, JS ;
WENZL, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) :249-273
[6]  
BRACKEN AJ, UQMATH9310 PREPR
[7]   MULTIPLE POLES AND OTHER FEATURES OF AFFINE TODA FIELD-THEORY [J].
BRADEN, HW ;
CORRIGAN, E ;
DOREY, PE ;
SASAKI, R .
NUCLEAR PHYSICS B, 1991, 356 (02) :469-498
[8]  
CHARI V, 1991, J REINE ANGEW MATH, V417, P87
[9]  
CHARI V, YANGIANS INTEGRABLE
[10]   ELASTIC S-MATRICES IN (1 + 1) DIMENSIONS AND TODA FIELD-THEORIES [J].
CHRISTE, P ;
MUSSARDO, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (24) :4581-4627