Evaluation of a Maximum Likelihood Estimator for the Identification of Power Systems Oscillation Modes

被引:0
|
作者
Menezes, Joao C. Y. [1 ]
e Silva, Aguinaldo S. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Elect Engn, Florianopolis, SC, Brazil
关键词
Power systems; Oscillation modes; Maximum likelihood estimation; Prony method;
D O I
10.1007/s40313-018-0402-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a maximum likelihood (ML) estimator is applied for the estimation of power system oscillation modes. A regularization term is used in order to improve the estimation. An index is proposed to rank the modes and separate spurious from real modes. The ML estimator is compared with Prony method, and its advantages and limitations are discussed. Both methods are applied to synthetic systems and to real Phasor Measurement Unit (PMU) data acquired from the Brazilian Interconnected Power System (BIPS). The results show that the proposed maximum likelihood estimator is useful to complement and validate the results obtained by Prony analysis.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 50 条
  • [1] Maximum Likelihood Estimator for the α-η-μ Fading Environment
    Batista, Fernando Palma
    de Souza, Rausley A. A.
    Ribeiro, Antonio Marcelo O.
    2016 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2016, : 133 - 136
  • [2] Identification of the Oscillation Modes of a Large Power System Using Ambient Data
    Leandro, R. B.
    Silva, A. S. e
    Decker, I. C.
    Agostini, M. N.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2015, 26 (04) : 441 - 453
  • [3] Blind Maximum-Likelihood Identification of Wiener Systems
    Vanbeylen, Laurent
    Pintelon, Rik
    Schoukens, Johan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (08) : 3017 - 3029
  • [4] Characterizations of the Maximum Likelihood Estimator of the Cauchy Distribution
    Okamura, K.
    Otobe, Y.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2576 - 2590
  • [5] Characterizations of the Maximum Likelihood Estimator of the Cauchy Distribution
    K. Okamura
    Y. Otobe
    Lobachevskii Journal of Mathematics, 2022, 43 : 2576 - 2590
  • [6] Maximum likelihood estimator for the drift of a Brownian flow
    Çaglar, M
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2000, 16 (01) : 23 - 33
  • [7] Maximum-Likelihood Estimator for Coarse Carrier Frequency Offset Estimation in OFDM Systems
    Yang, Feng
    Zhang, Zhenrong
    Chen, Yifan
    WIRELESS PERSONAL COMMUNICATIONS, 2009, 49 (01) : 55 - 66
  • [8] Maximum-Likelihood Estimator for Coarse Carrier Frequency Offset Estimation in OFDM Systems
    Feng Yang
    Zhenrong Zhang
    Yifan Chen
    Wireless Personal Communications, 2009, 49 : 55 - 66
  • [9] ASYMPTOTIC PROPERTIES OF A CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATOR
    FERGUSON, H
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (01): : 63 - 75
  • [10] A restricted maximum likelihood estimator for truncated height samples
    A'Hearn, Brian
    ECONOMICS & HUMAN BIOLOGY, 2004, 2 (01) : 5 - 19