NONPARAMETRIC REGRESSION M-QUANTILES

被引:13
作者
ANTOCH, J [1 ]
JANSSEN, P [1 ]
机构
[1] LIMBURGS UNIV CENTRUM, B-3610 DIEPENBEEK, BELGIUM
关键词
D O I
10.1016/0167-7152(89)90044-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
[31]   Nonparametric estimation of quantiles by the kernel method [J].
Faucher, D. ;
Rasmussen, P.F. ;
Bobée, B. .
Revue des Sciences de l'Eau, 2002, 15 (02) :515-541
[32]   Robust regression quantiles [J].
Adrover, J ;
Maronna, RA ;
Yohai, VJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 122 (1-2) :187-202
[33]   Nonparametric estimation of extreme conditional quantiles [J].
Beirlant, J ;
De Wet, T ;
Goegebeur, Y .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) :567-580
[34]   COMPUTING REGRESSION QUANTILES [J].
KOENKER, RW ;
DOREY, V .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1987, 36 (03) :383-393
[35]   AN ALGORITHM FOR REGRESSION QUANTILES [J].
WELLINGTON, JF ;
NARULA, SC .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1984, 13 (05) :683-704
[36]   CENSORED REGRESSION QUANTILES [J].
POWELL, JL .
JOURNAL OF ECONOMETRICS, 1986, 32 (01) :143-155
[37]   Restricted regression quantiles [J].
Zhao, QS .
JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 72 (01) :78-99
[38]   Regression models for quantiles [J].
Blagoveshchenskii Yu.N. ;
Svyatodukh I.V. .
Journal of Mathematical Sciences, 2001, 103 (4) :509-517
[39]   On Extreme Regression Quantiles [J].
Stephen Portnoy ;
Jana Jurecčkova´ .
Extremes, 1999, 2 (3) :227-243
[40]   Nonparametric prediction by conditional median and quantiles [J].
Gannoun, A ;
Saracco, J ;
Yu, KM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) :207-223