MODE LOCALIZATION DUE TO SYMMETRY-BREAKING NONLINEARITIES

被引:10
作者
Pierre, Christophe [1 ]
Shaw, Steven W. [2 ]
机构
[1] Univ Michigan, Dept Mech Engn & Appl Mech, Ann Arbor, MI 48109 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1991年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0218127491000361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some ideas regarding the occurrence of mode localization in nonlinear structural systems. Preliminary analytical and numerical findings indicate that even if the linearized system has perfect periodicity, and thus cannot feature localized behavior, severe localization may occur in the nonlinear system when nonlinear terms break symmetry. These symmetry-breaking nonlinear terms play the same role as disorder does in nearly periodic linear systems.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 8 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
Carr J, 1981, APPL CTR MANIFOLD TH
[3]   INVARIANT-IMBEDDING APPROACH TO LOCALIZATION .2. NONLINEAR RANDOM-MEDIA [J].
DOUCOT, B ;
RAMMAL, R .
JOURNAL DE PHYSIQUE, 1987, 48 (04) :527-545
[4]   CONFINEMENT OF VIBRATION BY STRUCTURAL IRREGULARITY [J].
HODGES, CH .
JOURNAL OF SOUND AND VIBRATION, 1982, 82 (03) :411-424
[5]   WEAK AND STRONG VIBRATION LOCALIZATION IN DISORDERED STRUCTURES - A STATISTICAL INVESTIGATION [J].
PIERRE, C .
JOURNAL OF SOUND AND VIBRATION, 1990, 139 (01) :111-132
[6]  
Shaw S. W., 1991, PREPRINT
[7]  
Vakakis A., 1991, PREPRINT
[8]  
Ziman J.M., 1979, MODELS DISORDER THEO