THE STABLE CLASSES AND THE CODIMENSION-ONE BIFURCATIONS OF THE PLANAR REPLICATOR SYSTEM

被引:5
作者
EDALAT, A [1 ]
ZEEMAN, EC [1 ]
机构
[1] UNIV WARWICK,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
关键词
D O I
10.1088/0951-7715/5/4/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nine-dimensional parameter space of the planar replicator system is reduced to a 3-torus and then stratified into 19 different components which are shown to be the stable classes of the system. A complete list of the 38 codimension-one bifurcations in the system is obtained and it is shown that the transversal deformations of topologically similar codimension-one flows with no cycle of saddles are equivalent.
引用
收藏
页码:921 / 939
页数:19
相关论文
共 11 条
  • [1] Andronov A. A., 1973, QUALITATIVE THEORY 2
  • [2] OCCURRENCE OF STRANGE ATTRACTORS IN 3 DIMENSIONAL VOLTERRA-EQUATIONS
    ARNEODO, A
    COULLET, P
    TRESSER, C
    [J]. PHYSICS LETTERS A, 1980, 79 (04) : 259 - 263
  • [3] Arnold V.I., 1972, RUSS MATH SURV, V27, P54, DOI DOI 10.1070/RM1972V027N05ABEH001385
  • [4] BELITSKII G, 1978, RUSSIAN MATH SURVEYS, V33
  • [5] CARVALHO MSB, 1983, THESIS U WARWICK
  • [6] EDALAT A, 1986, THESIS U WARWICK
  • [7] HOFBAUER J, 1981, NONLINEAR ANAL TMA, P1003
  • [8] Irwin M. C., 1980, SMOOTH DYNAMICAL SYS
  • [9] Peixoto M, 1962, TOPOLOGY, V1, P101, DOI 10.1016/0040-9383(65)90018-2
  • [10] Peixoto MC., 1959, AN ACAD BRAS CIENC, V31, P135