EMBEDDING GRIDS INTO HYPERCUBES

被引:10
作者
BETTAYEB, S
MILLER, Z
SUDBOROUGH, IH
机构
[1] MIAMI UNIV,DEPT MATH & STAT,OXFORD,OH 45056
[2] UNIV TEXAS,DEPT COMP SCI,RICHARDSON,TX 75080
关键词
D O I
10.1016/0022-0000(92)90030-M
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider efficient simulations of mesh connected networks (or good representations of array structures) by hypercube machines. In particular, we consider embedding a mesh or grid G into the smallest hypercube that at least as many points as G, called the optimal hypercube for G. In order to minimize simulation time we derive embeddings which minimize dilation, i.e., the maximum distance in the hypercube between images of adjacent points of G. Our results are: (1) There is a dilation 2 embedding of the [m × k] grid into its optimal hypercube, provided that ⌈logm⌉+log mk 2⌈logm⌉+ logm 2≤⌈logmk⌉ and (2) For any k < d, there is a dilation k + 1 embedding of a [a1 × a2 × ... × ad] grid into its optimal hypercube, provided that Σi=1d - 1 ⌈log Bk⌉ ≤ ⌈Σi=1d log ai⌉, where Bk= ad∏ki=1ai ∏ki=12⌈loga+ ∑ i=1 k ⌊loga1⌋ 2⌉. © 1992.
引用
收藏
页码:340 / 366
页数:27
相关论文
共 14 条
[1]  
ALELIUNAS R, 1982, IEEE T COMPUT, V31, P907, DOI 10.1109/TC.1982.1676109
[2]  
Bhatt S., 1986, 27th Annual Symposium on Foundations of Computer Science (Cat. No.86CH2354-9), P274, DOI 10.1109/SFCS.1986.38
[3]  
BRANDENBURG JE, 1985, 280182001 INT SCI CO
[4]   EMBEDDING OF GRIDS INTO OPTIMAL HYPERCUBES [J].
CHAN, MY .
SIAM JOURNAL ON COMPUTING, 1991, 20 (05) :834-864
[5]  
CHAN MY, IN PRESS IEEE T COMP
[6]  
CHAN MY, 1987, TRB287 U HONG KONG C
[7]   POLYNOMIAL-TIME ALGORITHMS FOR THE MIN CUT PROBLEM ON DEGREE RESTRICTED TREES [J].
CHUNG, MJ ;
MAKEDON, F ;
SUDBOROUGH, IH ;
TURNER, J .
SIAM JOURNAL ON COMPUTING, 1985, 14 (01) :158-177
[8]  
DEKEL E, 1981, SIAM J COMPUT, V10
[9]  
ELLIS JA, 1988, LECTURE NOTES COMPUT, P181
[10]  
GREENBERG DS, 1990, YALEUCSDRR535 YAL U