An Asymmetric Fuglede-Putnam's Theorem and Orthogonality

被引:0
|
作者
Ahmed, Bachir [1 ]
Segres, Abdelkder [2 ]
机构
[1] King Khaled Univ, Fac Sci, Dept Math, POB 9004, Abha, Saudi Arabia
[2] Mascara Univ, Dept Math, Mascara, Algeria
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2006年 / 46卷 / 04期
关键词
hyponormal operators; derivation; orthogonality; Putnam-Fuglede property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymmetric Fuglede-Putnam theorem for p-hyponormal operators and class (Y) is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 50 条
  • [1] A note on the Fuglede-Putnam theorem
    Paliogiannis, Fotios C.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (02): : 253 - 256
  • [2] ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM
    Rashid, M. H. M.
    Noorani, M. S. M.
    Saari, A. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (03): : 239 - 246
  • [3] ON THE CONVERSE OF THE FUGLEDE-PUTNAM THEOREM
    TAKAHASHI, K
    ACTA SCIENTIARUM MATHEMATICARUM, 1981, 43 (1-2): : 123 - 125
  • [4] ON EXTENSIONS OF FUGLEDE-PUTNAM THEOREM
    GUPTA, BC
    PATEL, SM
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (01): : 55 - 58
  • [5] A GENERALIZATION OF THE FUGLEDE-PUTNAM THEOREM
    BOJADZIEV, HN
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (12): : 1503 - 1505
  • [6] FUGLEDE-PUTNAM THEOREM FOR CLASS A OPERATORS
    Mecheri, Salah
    COLLOQUIUM MATHEMATICUM, 2015, 138 (02) : 183 - 191
  • [8] ANOTHER VERSION OF FUGLEDE-PUTNAM THEOREM
    Bakir, Aissa Nasli
    Mecheri, Salah
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (03) : 427 - 433
  • [9] Fuglede-Putnam theorem in algebras with involutions
    Ahramovich, M. V.
    Muratov, M. A.
    Shulman, V. S.
    MATHEMATICAL NOTES, 2015, 98 (3-4) : 537 - 549
  • [10] Fuglede-Putnam theorem for (α, β)-normal operators
    Bachir, A.
    Prasad, T.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1243 - 1249