A MISSING INFORMATION PRINCIPLE AND M-ESTIMATORS IN REGRESSION-ANALYSIS WITH CENSORED AND TRUNCATED DATA

被引:43
|
作者
LAI, TL [1 ]
YING, ZL [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT STAT,NEW BRUNSWICK,NJ 08903
来源
ANNALS OF STATISTICS | 1994年 / 22卷 / 03期
关键词
M-ESTIMATOR; CENSORING; TRUNCATION; SELF-CONSISTENCY; LINEAR REGRESSION; MARTINGALE; ASYMPTOTIC NORMALITY; INFLUENCE FUNCTION; ROBUSTNESS;
D O I
10.1214/aos/1176325627
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general missing information principle is proposed for constructing M-estimators of regression parameters in the presence df left truncation and right censoring on the observed responses. By making use of martingale central limit theorems and empirical process theory, the asymptotic normality of M-estimators is established under certain assumptions. Asymptotically efficient M-estimators are also developed by using data-dependent score functions. In addition, robustness properties of the estimators are discussed and formulas for their influence functions are derived for the robustness analysis.
引用
收藏
页码:1222 / 1255
页数:34
相关论文
共 50 条
  • [41] GENERALIZED M-ESTIMATORS FOR ERRORS-IN-VARIABLES REGRESSION
    CHENG, CL
    VANNESS, JW
    ANNALS OF STATISTICS, 1992, 20 (01): : 385 - 397
  • [42] AN ALMOST-SURE EXPANSION FOR REGRESSION M-ESTIMATORS
    FRESEN, JL
    LOMBARD, F
    SOUTH AFRICAN STATISTICAL JOURNAL, 1992, 26 (02) : 83 - 93
  • [43] BOUNDEDNESS OF M-ESTIMATORS FOR LINEAR REGRESSION IN TIME SERIES
    Johansen, Soren
    Nielsen, Bent
    ECONOMETRIC THEORY, 2019, 35 (03) : 653 - 683
  • [44] VARIATIONAL ANALYSIS OF CONSTRAINED M-ESTIMATORS
    Royset, Johannes O.
    Wets, Roger J-B
    ANNALS OF STATISTICS, 2020, 48 (05): : 2759 - 2790
  • [45] Weighted M-estimators for multivariate clustered data
    El Asri, M.
    Blanke, D.
    Gabriel, E.
    STATISTICS & PROBABILITY LETTERS, 2016, 112 : 26 - 34
  • [46] Modified robust ridge M-estimators for linear regression models: an application to tobacco data
    Wasim, Danish
    Khan, Sajjad Ahmad
    Suhail, Muhammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2703 - 2724
  • [47] LAW OF THE ITERATED LOGARITHM AND INVARIANCE-PRINCIPLE FOR M-ESTIMATORS
    HE, XM
    WANG, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (02) : 563 - 573
  • [48] Weighted penalized m-estimators in robust ridge regression: an application to gasoline consumption data
    Wasim, Danish
    Suhail, Muhammad
    Albalawi, Olayan
    Shabbir, Maha
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (15) : 3427 - 3456
  • [49] High-dimensional robust approximated M-estimators for mean regression with asymmetric data
    Luo, Bin
    Gao, Xiaoli
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [50] A SEMIPARAMETRIC MODEL FOR REGRESSION-ANALYSIS OF INTERVAL-CENSORED FAILURE TIME DATA
    FINKELSTEIN, DM
    WOLFE, RA
    BIOMETRICS, 1985, 41 (04) : 933 - 945