GLUTAMATE UPTAKE INTO ASTROCYTES STIMULATES AEROBIC GLYCOLYSIS - A MECHANISM COUPLING NEURONAL-ACTIVITY TO GLUCOSE-UTILIZATION

被引:2203
作者
PELLERIN, L
MAGISTRETTI, PJ
机构
[1] Institut de Physiologie, Université de Lausanne
关键词
GLUTAMATE TRANSPORTER; NA+; K+-ATPASE; 2-DEOXYGLUCOSE; POSITRON-EMISSION TOMOGRAPHY; MAGNETIC RESONANCE IMAGING;
D O I
10.1073/pnas.91.22.10625
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glutamate, released at a majority of excitatory synapses in the central nervous system, depolarizes neurons by acting at specific receptors. Its action is terminated by removal from the synaptic cleft mostly via Na+-dependent uptake systems located on both neurons and astrocytes. Here we report that glutamate, in addition to its receptor-mediated actions on neuronal excitability, stimulates glycolysis-i.e., glucose utilization and lactate production-in astrocytes. This metabolic action is mediated by activation of a Naf-dependent uptake system and not by interaction with receptors. The mechanism involves the Na+/K+-ATPase, which is activated by an increase in the intracellular concentration of Na+ cotransported with glutamate by the electrogenic uptake system. Thus, when glutamate is released from active synapses and taken up by astrocytes, the newly identified signaling pathway described here would provide a simple and direct mechanism to tightly couple neuronal activity to glucose utilization. In addition, glutamate-stimulated glycolysis is consistent with data obtained from functional brain imaging studies indicating local nonoxidative glucose utilization during physiological activation.
引用
收藏
页码:10625 / 10629
页数:5
相关论文
共 46 条
[1]  
[Anonymous], [No title captured]
[2]   THE GLIAL-CELL GLUTAMATE UPTAKE CARRIER COUNTERTRANSPORTS PH-CHANGING ANIONS [J].
BOUVIER, M ;
SZATKOWSKI, M ;
AMATO, A ;
ATTWELL, D .
NATURE, 1992, 360 (6403) :471-474
[3]   EXCITATORY AMINO-ACIDS DIRECTLY DEPOLARIZE RAT-BRAIN ASTROCYTES IN PRIMARY CULTURE [J].
BOWMAN, CL ;
KIMELBERG, HK .
NATURE, 1984, 311 (5987) :656-659
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   ASTROGLIAL PROCESSES AROUND IDENTIFIED GLUTAMATERGIC SYNAPSES CONTAIN GLUTAMINE-SYNTHETASE - EVIDENCE FOR TRANSMITTER DEGRADATION [J].
DEROUICHE, A ;
FROTSCHER, M .
BRAIN RESEARCH, 1991, 552 (02) :346-350
[6]   UPTAKE OF L-LACTATE BY CULTURED RAT-BRAIN NEURONS [J].
DRINGEN, R ;
WIESINGER, H ;
HAMPRECHT, B .
NEUROSCIENCE LETTERS, 1993, 163 (01) :5-7
[7]   GLYCOGEN IN ASTROCYTES - POSSIBLE FUNCTION AS LACTATE SUPPLY FOR NEIGHBORING CELLS [J].
DRINGEN, R ;
GEBHARDT, R ;
HAMPRECHT, B .
BRAIN RESEARCH, 1993, 623 (02) :208-214
[8]   PHYSIOLOGICAL STIMULATION INCREASES NONOXIDATIVE GLUCOSE-METABOLISM IN THE BRAIN OF THE FREELY MOVING RAT [J].
FELLOWS, LK ;
BOUTELLE, MG ;
FILLENZ, M .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (04) :1258-1263
[9]   NONOXIDATIVE GLUCOSE CONSUMPTION DURING FOCAL PHYSIOLOGIC NEURAL ACTIVITY [J].
FOX, PT ;
RAICHLE, ME ;
MINTUN, MA ;
DENCE, C .
SCIENCE, 1988, 241 (4864) :462-464
[10]   FOCAL PHYSIOLOGICAL UNCOUPLING OF CEREBRAL BLOOD-FLOW AND OXIDATIVE-METABOLISM DURING SOMATOSENSORY STIMULATION IN HUMAN-SUBJECTS [J].
FOX, PT ;
RAICHLE, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :1140-1144