ON RELAXATION NORMALITY IN THE FUGLEDE-PUTNAM THEOREM FOR A QUASI-CLASS A OPERATORS

被引:7
作者
Rashid, M. H. M. [1 ]
Noorani, M. S. M. [2 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, POB 7, Mutah, Jordan
[2] UKM, Fac Sci & Technol, Sch Math Sci, Selangor Darul Ehsan 43600, Malaysia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2009年 / 40卷 / 03期
关键词
Fuglede-Putnam theorem; quasi-class A;
D O I
10.5556/j.tkjm.40.2009.508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a bounded linear operator acting on a complex Hubert space H. In this paper, we show that if A is quasi-class A, B* is invertible quasi-class A, X is a Hilbert-Schmidt operator, AX = XB and parallel to vertical bar A*vertical bar parallel to parallel to vertical bar B vertical bar <= 1 then A*X = XB*.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 13 条
[1]  
Aluthge A, 1999, MATH INEQUAL APPL, V2, P113
[2]   w-Hyponormal operators [J].
Aluthge, A ;
Wang, DM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (01) :1-10
[3]   EXTENSIONS OF A THEOREM OF FUGLEDE AND PUTNAM [J].
BERBERIAN, SK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (01) :113-114
[4]   An operator transform from class A to the class of hyponormal operators and its application [J].
Cho, M ;
Yamazaki, T .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) :497-508
[5]  
Conway J., 1990, COURSE FUNCTIONAL AN
[6]  
Duggal BP, 2006, J KOREAN MATH SOC, V43, P899
[7]  
Furuta T., 1998, SCIENTIAE MATHEMATIC, V1, P389
[8]  
Halmos P.R., 1982, HILBERT SPACE PROBLE
[9]  
Ito M, 1999, MATH INEQUAL APPL, V2, P569
[10]  
Jeon IH, 2003, MATH INEQUAL APPL, V6, P309