ACTION SPECTRA AGAIN

被引:96
作者
COOHILL, TP
机构
[1] Department of Physics and Astronomy, Western Kentucky University
关键词
D O I
10.1111/j.1751-1097.1991.tb02103.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not persued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates of effect. Preliminary estimates suggest that ozone layer depletion may seriously impact such important biological end-points as skin cancer, cataracts, the immune system, crop yields, and oceanic phytoplankton. So action spectra continue to play a central role in important photobiological research.
引用
收藏
页码:859 / 870
页数:12
相关论文
共 107 条
[1]   MOLECULAR MECHANISMS OF ULTRAVIOLET-RADIATION CARCINOGENESIS [J].
ANANTHASWAMY, HN ;
PIERCEALL, WE .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1990, 52 (06) :1119-1136
[2]  
[Anonymous], 1986, STRATOSPHERIC OZONE
[3]  
[Anonymous], 1971, PHOTOPHYSIOLOGY, DOI [DOI 10.1016/B978-0-12-282606-1.50010-6, 10.1016/b978-0-12-282606-1.50010-6]
[4]   STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III [J].
Avery, Oswald T. ;
MacLeod, Colin M. ;
McCarty, Maclyn .
JOURNAL OF EXPERIMENTAL MEDICINE, 1944, 79 (02) :137-158
[5]   ISOFLAVONOID FORMATION AS AN INDICATOR OF UV STRESS IN BEAN (PHASEOLUS-VULGARIS L) LEAVES - THE SIGNIFICANCE OF PHOTOREPAIR IN ASSESSING POTENTIAL DAMAGE BY INCREASED SOLAR UV-B RADIATION [J].
BEGGS, CJ ;
STOLZERJEHLE, A ;
WELLMANN, E .
PLANT PHYSIOLOGY, 1985, 79 (03) :630-634
[7]  
BJORN LO, 1986, NATO ASI SER, V8, P185
[8]  
BOGENRIEDER A, 1982, BIOL EFFECTS UV B RA, P132
[9]  
BORNMAN JF, 1984, PHOTOBIOCH PHOTOBIOP, V8, P305
[10]   SOLAR ULTRAVIOLET RADIATION AS AN ECOLOGICAL FACTOR FOR ALPINE PLANTS [J].
CALDWELL, MM .
ECOLOGICAL MONOGRAPHS, 1968, 38 (03) :243-+