A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS

被引:69
作者
BARANGER, J
ELAMRI, H
机构
[1] UNIV ST ETIENNE, UFR SCI, F-42100 ST ETIENNE, FRANCE
[2] ECOLE NORMALE SUPER FES, FES, MOROCCO
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1991年 / 25卷 / 01期
关键词
D O I
10.1051/m2an/1991250100311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a posteriori error estimators for the mixed finite element approximation of some quasi-newtonian flows (fluids whose viscosity varies with the second invariant of the rate of deformation tensor). These estimators necessitate only the evaluation of the local residual of the finite element solution. They can be used in a self-adaptive mesh-refinement process.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 21 条
  • [1] ABDALASS E, 1987, THESIS ECOLE CENTRAL
  • [2] ABDALASS E, 1987, 1ST ICIAM PAR
  • [3] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [4] ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. MATHEMATICS OF COMPUTATION, 1979, 33 (146) : 435 - 463
  • [5] A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) : 1597 - 1615
  • [6] BANK RE, 1980, COMPUTERS SIMULATION, V22, P18
  • [7] BANK RE, 1986, ACCURACY ESTIMATES A
  • [8] BARANGER J, 1989, 2E C FRANC LAT MATH
  • [9] BARANGER J, 1989, NOV WORKSH INN FIN E
  • [10] BERNARDI C, 1984, PUBLICATIONS LABORAT, V17