ON THE BEST APPROXIMATION IN SMOOTH AND UNIFORMLY CONVEX REAL BANACH SPACE

被引:0
作者
Milicic, Pavle M. [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11000, Serbia
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2005年 / 20卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth and uniformly convex real Banach space and g functional defined as (2). The best approximation, ax, the vector y with vectors from [x] = span{x} (P([x])y = ax) is characterized with the equation g(y - ax, x) = 0. In certain Banach space, this equation, is possibly resolve for a. The above idea applied for P-my, where M is a n-dimensional subspace of X.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
[41]   On iterative fixed point convergence in uniformly convex Banach space and Hilbert space [J].
Srivastava, Julee ;
Singh, Neeta .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (01) :167-182
[42]   Composite Iterative Algorithms for Variational Inequality and Fixed Point Problems in Real Smooth and Uniformly Convex Banach Spaces [J].
Ceng, Lu-Chuan ;
Wen, Ching-Feng .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[43]   Best Approximation Result in Locally Convex Space [J].
Nashine, Hemant Kumar .
KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03) :389-397
[44]   Iterative Approximation to Convex Feasibility Problems in Banach Space [J].
Shih-Sen Chang ;
Jen-Chih Yao ;
Jong Kyu Kim ;
Li Yang .
Fixed Point Theory and Applications, 2007
[45]   Iterative approximation to convex feasibility problems in Banach space [J].
Chang, Shih-Sen ;
Yao, Jen-Chih ;
Kim, Jong Kyu ;
Yang, Li .
FIXED POINT THEORY AND APPLICATIONS, 2007, 2007 (1)
[46]   Multiobjective Convex Optimization in Real Banach Space [J].
Lai, Kin Keung ;
Hassan, Mohd ;
Maurya, Jitendra Kumar ;
Singh, Sanjeev Kumar ;
Mishra, Shashi Kant .
SYMMETRY-BASEL, 2021, 13 (11)
[47]   Cyclic pairs and common best proximity points in uniformly convex Banach spaces [J].
Gabeleh, Moosa ;
Mary, P. Julia ;
Eldred, A. Anthony Eldred ;
Otafudu, Olivier Olela .
OPEN MATHEMATICS, 2017, 15 :711-723
[48]   Convergence of subdifferentials and normal cones in locally uniformly convex Banach space [J].
Thibault, L. ;
Zakaryan, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 :110-134
[49]   New classes of uniformly convex functions of fractional power on Banach space [J].
Abdulnaby, Zainab E. .
Italian Journal of Pure and Applied Mathematics, 2020, 43 :926-933
[50]   New classes of uniformly convex functions of fractional power on Banach space [J].
Abdulnaby, Zainab E. .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43) :926-933