USE OF MICROELECTRODE ARRAYS TO DIRECTLY MEASURE DIFFUSION OF IONS IN SOLID ELECTROLYTES - PHYSICAL DIFFUSION OF AG+ IN A SOLID POLYMER ELECTROLYTE

被引:28
作者
CAMMARATA, V [1 ]
TALHAM, DR [1 ]
CROOKS, RM [1 ]
WRIGHTON, MS [1 ]
机构
[1] MIT,DEPT CHEM,CAMBRIDGE,MA 02139
关键词
D O I
10.1021/j100369a081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report experiments that demonstrate methodology for direct measurement of diffusion of molecular or ionic species in solid electrolyte media. A microelectrode array of closely spaced (1.4-μm) Pt microelectrodes (∼70 μm long × 2.7 μm wide × 0.1 μm high) allows direct measurement of the movement of Ag+ in aqueous electrolyte and in the solid polymer electrolytes, LiCF3SO3/MEEP [MEEP = poly(bis(2-(2-methoxyethoxy)ethoxy)phosphazene)] at 298 K with a molar ratio of LiCF3SO3 to polymer repeat unit of 1 to 4 and LiCF3SO3/PEO [PEO = poly(ethylene oxide)] at 352 K and a molar ratio of LiCF3SO3 to polymer repeat unit of 1 to 8. The crucial experiments involve anodically stripping Ag from a Ag-coated Pt microelectrode (generator) and electrochemically detecting the resulting Ag+ at nearby (1.4-23.4-μm) Pt electrodes (collectors) by reducing the Ag+ back to Ag. The time dependence of the collector current corresponding to Ag+-to-Ag reduction after the generation step allows evaluation of the diffusion coefficient, D, for the Ag+ in the various media and conditions used: D = 5 ± 2 × 10-9 cm2/s at 298 K in LiCF3SO3/MEEP, 2.3 ± 0.3 × 10-5 cm2/s in aqueous 0.1 M LiClO4, and 7 ± 1 × 10-8 cm2/s at 352 K in LiCF3SO3/PEO. For the arrays used, D = 0.22d2/tmt where d is the separation between the generator and the collector and tmt is the time of the maximum collector current. © 1990 American Chemical Society.
引用
收藏
页码:2680 / 2684
页数:5
相关论文
共 27 条
[1]   POLYPHOSPHAZENES WITH ETHERIC SIDE GROUPS - PROSPECTIVE BIOMEDICAL AND SOLID ELECTROLYTE POLYMERS [J].
ALLCOCK, HR ;
AUSTIN, PE ;
NEENAN, TX ;
SISKO, JT ;
BLONSKY, PM ;
SHRIVER, DF .
MACROMOLECULES, 1986, 19 (06) :1508-1512
[2]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[3]   IMPROVED METHOD FOR THE SYNTHESIS OF POLY(ORGANOPHOSPHAZENES) AND HINDERED CYCLOPHOSPHAZENES [J].
AUSTIN, PE ;
RIDING, GH ;
ALLCOCK, HR .
MACROMOLECULES, 1983, 16 (05) :719-722
[4]   MICROELECTROCHEMICAL TRANSISTORS BASED ON ELECTROSTATIC BINDING OF ELECTROACTIVE METAL-COMPLEXES IN PROTONATED POLY(4-VINYLPYRIDINE) - DEVICES THAT RESPOND TO 2 CHEMICAL STIMULI [J].
BELANGER, D ;
WRIGHTON, MS .
ANALYTICAL CHEMISTRY, 1987, 59 (10) :1426-1432
[5]   COMPLEX-FORMATION AND IONIC-CONDUCTIVITY OF POLYPHOSPHAZENE SOLID ELECTROLYTES [J].
BLONSKY, PM ;
SHRIVER, DF ;
AUSTIN, P ;
ALLCOCK, HR .
SOLID STATE IONICS, 1986, 18-9 (pt 1) :258-264
[6]  
BLONSKY PM, 1984, J AM CHEM SOC, V106, P6854, DOI 10.1021/ja00334a071
[7]   UNRAVELING REACTIONS WITH ROTATING ELECTRODES [J].
BRUCKENSTEIN, S ;
MILLER, B .
ACCOUNTS OF CHEMICAL RESEARCH, 1977, 10 (02) :54-61
[8]  
CHAO S, 1987, J AM CHEM SOC, V109, P8
[9]   AN ALL-POLYMERIC SOLID-STATE BATTERY [J].
CHIANG, CK .
POLYMER, 1981, 22 (11) :1454-1456
[10]   AN ELECTROCHEMICAL TIME-OF-FLIGHT EXPERIMENT [J].
FELDMAN, BJ ;
FELDBERG, SW ;
MURRAY, RW .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (26) :6558-6560