A NOVEL FRACTIONAL-ORDER HYPERCHAOTIC SYSTEM AND ITS SYNCHRONIZATION

被引:0
作者
Zhou, Ping [1 ,2 ]
Zhu, Wei [1 ,3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Network Control & Intelligent Instrument, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Inst Appl Phys, Chongqing 400065, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Inst Appl Math, Chongqing 400065, Peoples R China
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2009年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
hyperchaotic systems; synchronization; fractional-order;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a novel hyperchaotic system with one nonlinear term and its fractional-order system are proposed. Furthermore, synchronization between two fractional-order systems is achieved. The proposed synchronization scheme is simple and theoretically rigorous. Numerical simulations coincide with the theoretical analysis.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 18 条
[1]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[2]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[3]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[4]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[5]   Chaos in a fractional order modified Duffing system [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :262-291
[6]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[7]   Synchronization of fractional order chaotic systems [J].
Li, CG ;
Liao, XF ;
Yu, JB .
PHYSICAL REVIEW E, 2003, 68 (06)
[8]   Chaos in the fractional order Chen system and its control [J].
Li, CG ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :549-554
[9]   Chaos and hyperchaos in the fractional-order Rossler equations [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :55-61
[10]   The synchronization of three fractional differential systems [J].
Li, Changpin ;
Yan, Jianping .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :751-757