ISOMETRIES OF NONCOMPACT LIPSCHITZ-SPACES

被引:20
作者
WEAVER, N [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,DEPT MATH,SANTA BARBARA,CA 93106
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1995年 / 38卷 / 02期
关键词
D O I
10.4153/CMB-1995-035-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that under reasonable restrictions on the metric spaces X and Y, every surjective isometric isomorphism between Lip(X) and Lip(Y) arises in a simple manner from an isometry between X and Y. Our result differs from several previous results along these lines in that we do not require X and Y to be compact.
引用
收藏
页码:242 / 249
页数:8
相关论文
共 9 条
[1]  
CONWAY B, 1985, GRADUATE TEXTS MATH, V96
[2]  
de Leeuw K., 1961, STUD MATH, V21, P55
[3]  
JAROSZ K, 1988, T AM MATH SOC, V305, P206
[4]  
JENKINS TM, 1968, THESIS YALE U
[6]   ISOMETRIES BETWEEN BANACH-SPACES OF LIPSCHITZ FUNCTIONS [J].
MAYERWOLF, E .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 38 (1-2) :58-74
[7]   EXTREME POINTS AND LINEAR ISOMETRIES OF BANACH SPACE OF LIPSCHITZ FUNCTIONS [J].
ROY, AK .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05) :1150-&
[8]  
VASAVA MH, 1969, THESIS U WISCONSIN
[9]   LATTICES OF LIPSCHITZ FUNCTIONS [J].
WEAVER, N .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 164 (01) :179-193