SOME Q-BETA INTEGRALS ON SU(N) AND SP(N) THAT GENERALIZE THE ASKEY-WILSON AND NASRALLAH-RAHMAN INTEGRALS

被引:33
作者
GUSTAFSON, RA
机构
关键词
MULTIVARIATE BETA-INTEGRALS; Q-BETA-INTEGRALS; SELBERG BETA-INTEGRAL; MACDONALD-MORRIS CONJECTURE;
D O I
10.1137/S0036141092248614
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
SU(n) and Sp(n) generalizations of a q-beta integral of Nasrallah-Rahman are evaluated. Selberg's beta integral can be deduced as a special limiting case of the Sp(n) integral. Extensions of the q-Macdonald-Morris constant term identities for the affine root systems of types S(BC(n)), S(B(n)), S(B(n))upsilon, S(C(n)), SC(C(n))upsilon, and S(D(n)) can also be obtained from the Sp(n) integral. There are some additional integral evaluations for Sp(2) and Sp(3).
引用
收藏
页码:441 / 449
页数:9
相关论文
共 10 条
[1]  
ASKEY R, 1985, MEM AM MATH SOC, V319
[2]   A GENERALIZATION OF SELBERG BETA-INTEGRAL [J].
GUSTAFSON, RA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 22 (01) :97-105
[3]  
GUSTAFSON RA, IN PRESS T AM MATH S
[4]  
GUSTAFSON RA, 1982, SIAM J MATH ANAL, V23, P525
[5]  
GUSTAFSON RA, UNPUB HYPERGEOMETRIC
[6]   SOME CONJECTURES FOR ROOT SYSTEMS [J].
MACDONALD, IG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (06) :988-1007
[7]  
MORRIS WG, 1982, THESIS U WISCONSIN M
[8]  
NASRALLAH B, 1985, SIAM J MATH ANAL, V16, P186
[9]  
RAHMAN M, 1986, CAN J MATH, V39, P601
[10]  
Selberg A., 1944, NORSK MAT TIDSSKR, V24, P71